Сдай ЕГЭ на 100 баллов!

Учебные материалы и курсы для подготовки
к ЕГЭ по математике и другим предметам

+7 (495) 984-09-27
+7 (800) 775-06-82
Декабрьское сочинение

Принцип Гюйгенса.

 


Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

До сих пор мы занимались геометрической оптикой и изучали распространение световых лучей. При этом понятие луча мы считали интуитивно ясным и не давали ему определения. Основные законы геометрической оптики были сформулированы нами как постулаты.
Теперь мы займёмся волновой оптикой, в которой свет рассматривается как электромагнитные волны. В рамках волновой оптики понятие луча уже можно строго определить. Базовым постулатом волновой теории является принцип Гюйгенса; законы геометрической оптики оказываются его следствиями.

Волновые поверхности и лучи.

 

Представьте себе маленькую лампочку, которая даёт частые периодические вспышки. Каждая вспышка порождает расходящуюся световую волну в виде расширяющейся сферы (с центром в лампочке). Остановим время — и увидим в пространстве остановившиеся световые сферы, образованные вспышками в различные предшествующие моменты времени.

Эти сферы — так называемые волновые поверхности. Заметьте, что лучи, идущие от лампочки, перпендикулярны волновым поверхностям.

Чтобы дать строгое определение волновой поверхности, давайте вспомним сначала, что такое фаза колебаний. Пусть величина совершает гармонические колебания по закону:

.

Так вот, фаза — это величина , которая является аргументом косинуса. Фаза, как видим, линейно возрастает со временем. Значение фазы при равно и называется
начальной фазой.

Вспомним также, что волна представляет собой распространение колебаний в пространстве.В случае механических волн это будут колебания частиц упругой среды, в случае электромагнитных волн — колебания векторов напряжённости электрического поля и индукции магнитного поля.

Вне зависимости от того, какие волны рассматриваются, мы можем сказать, что в каждой точке пространства, захваченной волновым процессом, происходят колебания некоторой величины; такой величиной является набор координат колеблющейся частицы в случае механической волны или набор координат векторов, описывающих электрическое и магнитное поля в электромагнитной волне.

Фазы колебаний в двух различных точках пространства, вообще говоря, имеют разное значение. Интерес представляют множества точек, в которых фаза одна и та же. Оказывается, совокупность точек, в которых фаза колебаний в данный момент времени имеет фиксированное значение, образует двумерную поверхность в пространстве.

Определение. Волновая поверхность — это множество всех точек пространства, в которых фаза колебаний в данный момент времени имеет одно и то же значение.

Коротко говоря, волновая поверхность есть поверхность постоянной фазы. Каждому значению фазы отвечает своя волновая поверхность. Набору различных значений фазы соответствует семейство волновых поверхностей.

С течением времени фаза в каждой точке меняется, и волновая поверхность, отвечающая фиксированному значению фазы, перемещается в пространстве. Следовательно, распространение волн можно рассматривать как движение волновых поверхностей! Тем самым в нашем распоряжении оказываются удобные геометрические образы для описания физических волновых процессов.

Например, если точечный источник света находится в прозрачной однородной среде, то волновые поверхности являются концентрическими сферами с общим центром в источнике. Распространение света выглядит как расширение этих сфер. Мы это уже видели выше в ситуации с лампочкой.

Через каждую точку пространства в данный момент времени может проходить только одна волновая поверхность. В самом деле, если предположить, что через точку проходят две волновых поверхности, отвечающие различным значениям фазы и , то немедленно получим противоречие: фаза колебаний в точке окажется одновременно равна этим двум различным числам.

Коль скоро через точку проходит единственная волновая поверхность, то однозначно определено и направление перпендикуляра к волновой поверхности в данной точке.

Определение. Луч — это линия в пространстве, которая в каждой своей точке перпендикулярна волновой поверхности, проходящей через эту точку.

Иными словами, луч есть общий перпендикуляр к семейству волновых поверхностей. Направление луча — это направление распространения волны. Вдоль лучей осуществляется перенос энергии волны от одних точек пространства к другим.

По мере распространения волны происходит перемещение границы, которая разделяет область пространства, захваченную волновым процессом, и невозмущённую пока область. Эта граница называется волновым фронтом. Таким образом, волновой фронт — это множество всех точек пространства, которых достиг колебательный процесс в данный момент времени. Волновой фронт есть частный случай волновой поверхности; это, если можно так выразиться, «самая первая» волновая поверхность.

К наиболее простым видам геометрических поверхностей относятся сфера и плоскость. Соответственно, имеем два важных случая волновых процессов с волновыми поверхностями такой формы — это сферические и плоские волны.

Сферическая волна.

 

Волна называется сферической, если её волновые поверхности — сферы (рис. 1).

Рис. 1. Сферическая волна

 

Волновые поверхности показаны синим пунктиром, а зелёные радиальные стрелки — это лучи, перпендикулярные волновым поверхностям.

Рассмотрим прозрачную однородную среду, физические свойства которой одинаковы вдоль всех направлений. Точечный источник света, помещённый в такую среду, излучает сферические волны. Это понятно -
ведь свет пойдёт в каждом направлении с одинаковой скоростью, так что любая волновая поверхность будет сферой.

Ну а световые лучи, как мы заметили, оказываются в этом случае обычными прямолинейными геометрическими лучами с началом в источнике. Помните закон прямолинейного распространения света: в прозрачной однородной среде световые лучи являются прямыми линиями? В геометрической оптике мы сформулировали его как постулат. Теперь мы видим (для случая точечного источника), как этот закон следует из представлений о волновой природе света.

В теме «Электромагнитные волны» мы ввели понятие плотности потока излучения:

.

Здесь — энергия, которая переносится за время через поверхность площади , расположенную перпендикулярно лучам. Таким образом, плотность потока излучения — это энергия, переносимая волной вдоль лучей через единицу площади в единицу времени.

В нашем случае энергия равномерно распределяется по поверхности сферы, радиус которой увеличивается в процессе распространения волны. Площадь поверхности сферы равна: , поэтому для плотности потока излучения получим:

.

Как видим, плотность потока излучения в сферической волне обратно пропорциональна квадрату расстояния до источника.

Поскольку энергия пропорциональна квадрату амплитуды колебаний электромагнитного поля, мы приходим к выводу, что амплитуда колебаний в сферической волне обратно пропорциональна расстоянию до источника.

Плоская волна.

 

Волна называется плоской, если её волновые поверхности — плоскости (рис. 2).

Рис. 2. Плоская волна

 

Синим пунктиром показаны параллельные плоскости, являющиеся волновыми поверхностями. Лучи — зелёные стрелки — снова оказываются прямыми линиями.

Плоская волна — одна из важнейших идеализаций волновой теории; математически она описывается наиболее просто. Этой идеализацией можно пользоваться, например, когда мы находимся на достаточно большом расстоянии от источника. Тогда в окрестности точки наблюдения можно пренебречь искривлением сферической волновой поверхности и считать волну приблизительно плоской.

В дальнейшем, выводя законы отражения и преломления из принципа Гюйгенса, мы будем использовать именно плоские волны. Но сначала разберёмся с самим принципом Гюйгенса.

Принцип Гюйгенса.

 

Мы говорили выше, что распространение волн удобно представлять себе как движение волновых поверхностей. Но согласно каким правилам перемещаются волновые поверхности? Иными словами — как, зная положение волновой поверхности в данный момент времени, определить её положение в следующий момент?

Ответ на этот вопрос даёт принцип Гюйгенса — основной постулат волновой теории. Принцип Гюйгенса равным образом справедлив как для механических, так и для электромагнитных волн.

Чтобы лучше понять идею Гюйгенса, давайте рассмотрим такой пример. Бросим в воду горсть камней. От каждого камня пойдёт круговая волна с центром в точке падения камня. Эти круговые волны, накладываясь друг на друга, создадут общую волновую картину на поверхности воды. Важно то, что все круговые волны и порождённая ими волновая картина будут существовать и после того, как камни пустятся на дно. Стало быть, непосредственной причиной исходных круговых волн служат не сами камни, а локальные возмущения поверхности воды в тех местах, куда камни упали. Именно локальные возмущения сами по себе являются источниками расходящихся круговых волн и формирующейся волновой картины, и уже не столь важно, что конкретно послужило причиной каждого из этих возмущений — камень ли, поплавок или какой-то иной объект. Для описания последующего волнового процесса важно только то, что в определённых точках поверхности воды возникли круговые волны.

Ключевая идея Гюйгенса состояла в том, что локальные возмущения могут порождаться не только посторонними объектами типа камня или поплавка, но также и распространяющейся в пространстве волной!

Принцип Гюйгенса. Каждая точка пространства, вовлечённая в волновой процесс, сама становится источником сферических волн.

Эти сферические волны, распространяющиеся во все стороны от каждой точки волнового возмущения, называются вторичными волнами. Последующая эволюция волнового процесса состоит в наложении вторичных волн, испущенных всеми точками, до которых волновой процесс уже успел добраться.

Принцип Гюйгенса даёт рецепт построения волновой поверхности в момент времени по известному её положению в момент времени (рис. 3).

Рис. 3. Принцип Гюйгенса: движение волновых поверхностей

 

Именно, каждую точку исходной волновой поверхности мы рассматриваем как источник вторичных волн. За время вторичные волны пройдут расстояние , где — скорость волны. Из каждой точки старой волновой поверхности строим сферы радиуса ; новая волновая поверхность будет касательной ко всем этим сферам. Говорят ещё, что волновая поверхность в любой момент времени служит огибающей семейства вторичных волн.

Но, конечно, для построения волновой поверхности мы не обязаны брать вторичные волны, испущенные точками, лежащими непременно на одной из предыдущих волновых поверхностей.Искомая волновая поверхность будет огибающей семейства вторичных волн, излучённых точками вообще всякой поверхности, вовлечённой в колебательный процесс.

На базе принципа Гюйгенса можно вывести законы отражения и преломления света, которые раньше мы рассматривали лишь как обобщение экспериментальных фактов.

Вывод закона отражения.

 

Предположим, что на поверхность раздела двух сред падает плоская волна (рис. 4). Фиксируем две точки этой поверхности.

Рис. 4. Отражение волны

 

В эти точки приходят два падающих луча и ; плоскость , перпендикулярная этим лучам, есть волновая поверхность падающей волны.

В точке проведена нормаль к отражающей поверхности. Угол есть, как вы помните, угол падения.

Из точек И выходят отражённые лучи и . Перпендикулярная этим лучам плоскость есть волновая поверхность отражённой волны. Угол отражения обозначим пока ; мы хотим доказать, что .

Все точки отрезка служат источниками вторичных волн. Раньше всего волновая поверхность приходит в точку . Затем, по мере движения падающей волны, в колебательный процесс вовлекаются другие точки данного отрезка, и в самую последнюю очередь — точка .

Соответственно, раньше всего начинается излучение вторичных волн в точке ; сферическая волна с центром в имеет на рис. 4 наибольший радиус. По мере приближения к точке радиусы сферических вторичных волн, испущенных промежуточными точками, уменьшаются до нуля — ведь вторичная волна будет излучена тем позже, чем ближе её источник находится к точке .

Волновая поверхность отражённой волны есть плоскость, касательная ко всем этим сферам. На нашем планиметрическом чертеже есть отрезок касательной, проведённой из точки к самой большой окружности с центром в и радиусом .

Теперь заметим, что радиус — это расстояние, пройденное вторичной волной с центром в за то время, пока волновая поверхность двигается к точке . Скажем это чуть по-другому: время движения вторичной волны от точки до точки равно времени движения падающей волны от точки до точки . Но скорости движения падающей и вторичной волн совпадают — ведь дело происходит в одной и той же среде! Поэтому, раз совпадают скорости и времена, то равны и расстояния: .

Получается, что прямоугольные треугольники и равны по гипотенузе и катету. Стало быть, равны и соответствующие острые углы: . Остаётся заметить, что (так как оба они равны ) и (оба они равны ).
Таким образом, — угол отражения равен углу падения, что и требовалось.

Кроме того, из построения на рис. 4 нетрудно видеть, что выполнено и второе утверждение закона преломления: падающий луч , отражённый луч и нормаль к отражающей поверхности лежат в одной плоскости.

Вывод закона преломления.

 

Теперь покажем, как из принципа Гюйгенса следует закон преломления. Будем для определённости считать, что плоская электромагнитная волна распространяется в воздухе и падает на границу с некоторой прозрачной средой (рис. 5). Как обычно, угол падения есть угол между падающим лучом и нормалью к поверхности, угол преломления — это угол между преломлённым лучом и нормалью.

Рис. 5. Преломление волны

 

Точка является первой точкой отрезка , которой достигает волновая поверхность падающей волны; в точке излучение вторичных волн начинается раньше всего. Пусть — время, которое с этого момента требуется падающей волне, чтобы достичь точки , то есть пройти отрезок .

Скорость света в воздухе обозначим , скорость света в среде пусть будет . Пока падающая волна проходит расстояние и достигает точки , вторичная волна из точки распространится на расстояние .

Поскольку , то . Вследствие этого волновая поверхность не параллельна волновой поверхности — происходит преломление света! В рамках геометрической оптики не давалось никакого объяснения того, почему вообще наблюдается явление преломления. Причина преломления кроется в волновой природе света и становится понятной с точки зрения
принципа Гюйгенса: всё дело в том, что скорость вторичных волн в среде меньше скорости света в воздухе, и это приводит к повороту волновой поверхности относительно исходного положения .

Из прямоугольных треугольников и легко видеть, что и (для краткости обозначено ). Имеем, таким образом:

.

Поделив эти уравнения друг на друга, получим:

.

Отношение синуса угла падения к синусу угла преломления оказалось равно постоянной величине , не зависящей от угла падения. Эта величина называется показателем преломления среды:

.

Получился хорошо известный нам закон преломления:

.

Обратите внимание: физический смысл показателя преломления (как отношения скоростей света в вакууме и в среде) прояснился опять-таки благодаря принципу Гюйгенса.

Из рис. 5 очевидно и второе утверждение закона преломления: падающий луч , преломлённый луч и нормаль к границе раздела лежат в одной плоскости.

 

Звоните нам: +7 (495) 984-09-27, +7 (800) 775-06-82 (бесплатный звонок по России)

Или нажмите на кнопку «Записаться на тестирование», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Записаться на тестирование

Полезные материалы для ЕГЭ в нашей рассылке. Обучающее видео бесплатно!

Ссылка на обучающее видео придет Вам по e-mail.