Темы кодификатора ЕГЭ: виды механического движения, скорость, ускорение, уравнения прямолинейного равноускоренного движения, свободное падение.
Равноускоренное движение - это движение с постоянным вектором ускорения . Таким образом, при равноускоренном движении остаются неизменными направление и абсолютная величина ускорения.
Давайте ещё раз потренируемся в элементарном интегрировании. Исходим из того, что производная вектора скорости есть вектор ускорения:
. (1)
В нашем случае имеем . Что надо продифференцировать, чтобы получить постоянный вектор
? Разумеется, функцию
. Но не только: к ней можно добавить ещё произвольный постоянный вектор
(ведь производная постоянного вектора равна нулю). Таким образом,
. (2)
Каков смысл константы ? В начальный момент времени
скорость равна своему начальному значению:
. Поэтому, полагая
в формуле (2), получим:
.
Итак, константа - это начальная скорость тела. Теперь соотношение (2) принимает свой окончательный вид:
. (3)
В конкретных задачах мы выбираем систему координат и переходим к проекциям на координатные оси. Часто хватает двух осей и
прямоугольной декартовой системы координат, и векторная формула (3) даёт два скалярных равенства:
, (4)
. (5)
Формула для третьей компоненты скорости, если она необходима, выглядит аналогично.)
Подставляем сюда выражение для скорости, даваемое формулой (3):
(6)
Сейчас нам предстоит проинтегрировать равенство (6). Это несложно. Чтобы получить , надо продифференцировать функцию
. Чтобы получить
, нужно продифференцировать
. Не забудем добавить и произвольную константу
:
.
Ясно, что - это начальное значение
радиус-вектора
в момент времени
. В результате получаем искомый закон равноускоренного движения:
. (7)
Переходя к проекциям на координатные оси, вместо одного векторного равенства (7) получаем три скалярных равенства:
. (8)
. (9)
. (10)
Формулы (8) - (10) дают зависимость координат тела от времени и поэтому служат решением основной задачи механики для равноускоренного движения.
Снова вернёмся к закону движения (7). Заметим, что - перемещение тела. Тогда
получаем зависимость перемещения от времени:
.
,
,
,
где - проекция перемещения на ось
.
Но очень часто помогает ещё одна формула, являющаяся их следствием. Выразим из первой формулы время:
и подставим в формулу для перемещения:
.
После алгебраических преобразований (проделайте их обязательно!) придём к соотношению:
.
Эта формула не содержит времени и позволяет быстрее приходить к ответу в тех задачах, где время не фигурирует.
Свободное падение тела, независимо от его массы, происходит с постоянным ускорением свободного падения , направленным вертикально вниз. Почти во всех задачах при расчётах полагают
м/с
.
Давайте разберём несколько задач и посмотрим, как работают выведенные нами формулы для равноускоренного движения.
Задача. Найти скорость приземления дождевой капли, если высота тучи км.
Решение. Направим ось вертикально вниз, расположив начало отсчёта в точке отрыва капли. Воспользуемся формулой
.
Имеем: - искомая скорость приземления,
. Получаем:
, откуда
. Вычисляем:
м/с. Это 720 км/ч, порядка скорости пули.
На самом деле капли дождя падают со скоростью порядка нескольких метров в секунду. Почему такое расхождение? Сопротивление воздуха!
Задача. Тело брошено вертикально вверх со скоростью м/с. Найти его скорость через
c.
Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу
.
Здесь , так что
. Вычисляем:
м/с. Значит, скорость будет равна 20 м/с. Знак проекции указывает на то, что тело будет лететь вниз.
Задача. С балкона, находящегося на высоте м, бросили вертикально вверх камень со скоростью
м/с. Через какое время камень упадёт на землю?
Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу
.
Имеем: так что
, или
. Решая квадратное уравнение, получим
c.
Предположим, что тело брошено горизонтально со скоростью с высоты
. Найдём время и дальность полёта, а также выясним, по какой траектории происходит движение.
Выберем систему координат так, как показано на рис. 1.
![]() |
Рис. 1. Горизонтальный бросок |
Используем формулы:
В нашем случае . Получаем:
. (11)
Время полёта найдём из условия, что в момент падения координата тела
обращается в нуль:
.
Дальность полёта - это значение координаты
в момент времени
:
.
Уравнение траектории получим, исключая время из уравнений (11). Выражаем из первого уравнения и подставляем во второе:
.
Получили зависимость от
, которая является уравнением параболы. Следовательно, тело летит по параболе.
Предположим, что тело брошено с поверхности Земли со скоростью , направленной под углом
к горизонту. Найдём время и дальность полёта, а также выясним, по какой траектории двигается тело.
Выберем систему координат так, как показано на рис. 2.
![]() |
Рис. 2. Бросок под углом к горизонту |
Начинаем с уравнений:
,
.
В нашем случае . Получаем:
.
Дальше действуем так же, как и в случае горизонтального броска. В результате приходим к соотношениям:
,
,
.
(Обязательно проделайте эти вычисления самостоятельно!) Как видим, зависимость от
снова является уравнением параболы.Попробуйте также показать, что максимальная высота подъёма определяется формулой:
.
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!
СмотретьДля нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.