Slider

Метод интервалов

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

\genfrac{}{}{}{0}{\displaystyle x^2+2x-3}{\displaystyle \left( x-7 \right)\left( x+5 \right)} \geqslant 0,

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. (Если вы не помните, что такое нули функции и знак функции на промежутке – смотрите статью «Исследование графика функции»).

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида  ax^2+bx+c.

ax^2+bx+c=a\left( x-x_1 \right)\left( x-x_2 \right), где x_1 и x_2 — корни квадратного уравнения ax^2+bx+c=0.

Получим:

\genfrac{}{}{}{0}{\displaystyle \left( x-1 \right)\left( x+3 \right)}{\displaystyle \left( x-7 \right)\left( x+5 \right)} \geqslant 0

Рисуем ось X и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя -5 и 7 - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя -3 и 1 - закрашены, так как неравенство нестрогое. При x=-3 и x=1 наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось X на 5 промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
1) x<-5. Возьмем, например, x=-10 и проверим знак выражения \genfrac{}{}{}{0}{\displaystyle \left( x-1 \right)\left( x+3 \right)}{\displaystyle \left( x-7 \right)\left( x+5 \right)}в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак \left( + \right).

2) Следующий промежуток: -5<x<-3. Проверим знак при x=-4. Получаем, что левая часть поменяла знак на \left( - \right).

3) -3<x<1. Возьмем x=0. При x=0 выражение положительно - следовательно, оно положительно на всем промежутке от -3 до 1.

4) При 1<x<7 левая часть неравенства отрицательна. 

5) И, наконец, x>7. Подставим x=10 и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак \left( + \right).

Мы нашли, на каких промежутках выражение \genfrac{}{}{}{0}{\displaystyle \left( x-1 \right)\left( x+3 \right)}{\displaystyle \left( x-7 \right)\left( x+5 \right)}положительно. Осталось записать ответ:

Ответ: \left( -\infty ;-5 \right)\cup \left[ -3 ;1 \right]\cup \left( 7 ;+ \infty \right).

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным.

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

\genfrac{}{}{}{0}{\displaystyle P\left( x \right)}{\displaystyle Q\left( x \right)} \geqslant 0, или \genfrac{}{}{}{0}{\displaystyle P\left( x \right)}{\displaystyle Q\left( x \right)} > 0, или \genfrac{}{}{}{0}{\displaystyle P\left( x \right)}{\displaystyle Q\left( x \right)} \leqslant 0, или \genfrac{}{}{}{0}{\displaystyle P\left( x \right)}{\displaystyle Q\left( x \right)} < 0.

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения \genfrac{}{}{}{0}{\displaystyle P\left( x \right)}{\displaystyle Q\left( x \right)} в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

\genfrac{}{}{}{0}{\displaystyle \left( x-2 \right)^2}{\displaystyle \left( x-1 \right)\left( x-3 \right)}>0

Снова расставляем точки на оси X. Точки 1 и 3 - выколотые, поскольку это нули знаменателя. Точка 2 - тоже выколота, поскольку неравенство строгое.

При x<1 числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, x=0. Левая часть имеет знак \left( + \right):

При 1<x<2 числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак \left( - \right):

При 2<x<3 ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак \left( - \right):

Наконец, при x>3 все множители положительны, и левая часть имеет знак \left( + \right):

Ответ: \left( -\infty ;1 \right)\cup \left( 3 ;+ \infty \right).

Почему нарушилось чередование знаков? Потому что при переходе через точку 2 "ответственный" за неё множитель \left( x-2 \right)^2 не изменил знак. Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель (x-c) стоит в чётной степени (например, в квадрате), то при переходе через точку x=c знак выражения в левой части не меняется. В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

\genfrac{}{}{}{0}{\displaystyle \left( x-2 \right)^2}{\displaystyle \left( x-1 \right)\left( x-3 \right)} \geqslant 0

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение x=2 Это происходит потому, что при x=2 и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: \left( -\infty ;1 \right)\cup \{2\} \cup \left( 3 ;+ \infty \right).

В задаче C3 на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

\genfrac{}{}{}{0}{\displaystyle \left( x+2 \right)\left( x^2-4x+7 \right)}{\displaystyle x-5}<0

Квадратный трехчлен x^2-4x+7 на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения x^2-4x+7 при всех x одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции.

И теперь мы можем поделить обе части нашего неравенства на величину x^2-4x+7, положительную при всех x. Придём к равносильному неравенству:

\genfrac{}{}{}{0}{\displaystyle x+2}{\displaystyle x-5}<0

- которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5. Рассмотрим еще одно неравенство, на вид совсем простое:

\genfrac{}{}{}{0}{\displaystyle 2}{\displaystyle x}<1

Так и хочется умножить его на x. Но мы уже умные, и не будем этого делать. Ведь x может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому — соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

\genfrac{}{}{}{0}{\displaystyle 2}{\displaystyle x}-1<0

\genfrac{}{}{}{0}{\displaystyle 2-x}{\displaystyle x}<0

\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0

И после этого - применим метод интервалов.


Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить