Slider

Правильный треугольник. Площадь правильного треугольника

Правильный треугольник — треугольник, у которого все стороны равны. Каждый угол правильного треугольника равен 60 градусов.
Правильный треугольник называют еще равносторонним.

Правильный треугольник

Каждая из высот правильного треугольника является также его медианой и биссектрисой.
Центры вписанной и описанной окружностей правильного треугольника совпадают.

Пусть сторона правильного треугольника равна a.

Высота правильного треугольника: h=\genfrac{}{}{}{0}{\displaystyle \sqrt{3}}{\displaystyle 2} a
Радиус окружности, вписанной в правильный треугольник: r=\genfrac{}{}{}{0}{\displaystyle \sqrt{3}}{\displaystyle 6} a.
Радиус описанной окружности в два раза больше: R=\genfrac{}{}{}{0}{\displaystyle \sqrt{3}}{\displaystyle 3} a.
Площадь правильного треугольника: S=\genfrac{}{}{}{0}{\displaystyle \sqrt{3}}{\displaystyle 4} a^2.

Все эти формулы легко доказать. Если вы нацелены на решение задач части C — докажите их самостоятельно.

1. Сторона правильного треугольника равна \sqrt{3}. Найдите радиус окружности, вписанной в этот треугольник.

Задача решается в одну строчку. Радиус вписанной окружности r=\genfrac{}{}{}{0}{\displaystyle \sqrt{3}}{\displaystyle 6} a=0,5.

2. Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 6.

Рисунок к задаче 2

Сравним формулы для высоты правильного треугольника и радиуса вписанной окружности. Очевидно, радиус вписанной окружности равен \genfrac{}{}{}{0}{\displaystyle 1}{\displaystyle 3} высоты.

Ответ: 2.

3. Сторона правильного треугольника равна \sqrt{3}. Найдите радиус окружности, описанной около этого треугольника.

Рисунок к задаче 3

Радиус окружности, описанной вокруг правильного треугольника, равен \genfrac{}{}{}{0}{\displaystyle \sqrt{3}}{\displaystyle 6}a.

Ответ: 1.

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить