Высоты, медианы и биссектрисы треугольника постоянно встречаются нам в задачах по геометрии. Мы начнем с таблицы, в которой показано, что такое высоты, медианы и биссектрисы, и какими свойствами они обладают. Затем — подробные объяснения и решение задач.
Напомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.
Три высоты треугольника всегда пересекаются в одной точке. Вот как это выглядит в случае остроугольного треугольника.
Попробуйте провести три высоты в тупоугольном треугольнике. Получилось? Да, редкий выпускник справляется с этим заданием. Действительно, мы не можем опустить перпендикуляр из точки на отрезок
, зато можем опустить его на прямую
— то есть на продолжение стороны
.
В этом случае в одной точке пересекаются не сами высоты, а их продолжения.
А как выглядят три высоты в прямоугольном треугольнике? В какой точке они пересекаются?
Медиана треугольника — отрезок, соединяющий его вершину с серединой противоположной стороны.
Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении , считая от вершины.
Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.
У биссектрисы угла есть замечательное свойство — точки, принадлежащие ей, равноудалены от сторон угла. Поэтому три биссектрисы треугольника пересекаются в одной точке, равноудаленной от всех сторон треугольника. Эта точка является центром окружности, вписанной в треугольник.
Еще одно свойство биссектрисы пригодится тем, кто собирается решать задачу . Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.
Разберем несколько задач, в которых речь идет о высотах, медианах и биссектрисах треугольника. Все задачи взяты из Банка заданий ФИПИ.
1. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.
Пусть биссектрисы треугольника (в котором угол
равен
) пересекаются в точке
.
Рассмотрим треугольник .
,
, тогда
Острый угол между биссектрисами на рисунке обозначен .
Угол смежный с углом
, следовательно,
.
Поскольку треугольник — прямоугольный, то
.
Тогда .
Ответ: .
2. Острые углы прямоугольного треугольника равны и
. Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.
Пусть — высота, проведенная из вершины прямого угла
,
— биссектриса угла
.
Тогда
.
Угол между высотой и биссектрисой — это угол .
Ответ: .
3. Два угла треугольника равны и
. Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.
Из треугольника (угол
— прямой) найдем угол
. Он равен
.
Из треугольника (
— прямой) найдем угол
. Он равен
.
В треугольнике известны два угла. Найдем третий, то есть угол
, который и является тупым углом между высотами треугольника
:
.
Ответ: .
4. В треугольнике угол
равен
,
и
— биссектрисы, пересекающиеся в точке
. Найдите угол
. Ответ дайте в градусах.
Пусть в треугольнике угол
равен
, угол
равен
.
Рассмотрим треугольник .
, тогда
.
Из треугольника получим, что
.
Тогда .
Ответ: .
5. В треугольнике угол
равен
, угол
равен
.
,
и
— биссектрисы, пересекающиеся в точке
. Найдите угол
. Ответ дайте в градусах.
Найдем угол . Он равен
.
Тогда .
Из треугольника найдем угол
. Он равен
.
Рассмотрим треугольник .
,
. Значит
Ответ: .
6. В треугольнике ,
— медиана, угол
равен
, угол
равен
. Найдите угол
. Ответ дайте в градусах.
Как решать эту задачу? У медианы прямоугольного треугольника, проведенной из вершины прямого угла, есть особое свойство. Мы докажем его в теме «Прямоугольник и его свойства».
Подсказка: Сделайте чертеж, найдите на нем равнобедренные треугольники и докажите, что они равнобедренные.
Правильный ответ: .
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!
СмотретьДля нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.