Сдай ЕГЭ на 100 баллов!

Учебные материалы и курсы для подготовки
к ЕГЭ по математике и другим предметам

+7 (495) 984-09-27
+7 (800) 775-06-82
Декабрьское сочинение

Геометрия на ЕГЭ по математике

Геометрия на ЕГЭ по математике — одна из сложных тем для абитуриентов. Дело в том, что когда-то экзамен по геометрии в школе был обязательным, а сейчас — нет. В результате у большинства абитуриентов знания по геометрии близки к нулю.

Геометрия на ЕГЭ — это четыре задачи в части и  (две по планиметрии и две по стереометрии), а также задача  и для многих недосягаемая . Как же научиться их решать?

Начнем с планиметрии. Прежде всего, вам нужно выучить основные формулы геометрии.

На нашем сайте вы найдете курс геометрии с нуля — основные определения, формулы и теоремы, а также разбор множества экзаменационных задач по геометрии из части .

Для решения задачи  нужна более серьезная подготовка.
Первый этап — теория. Необходимый материал есть в учебнике по геометрии за  класс (автор — А. В. Погорелов или Л. С. Атанасян). Выпишите в тетрадь определения и формулировки теорем. Сделайте чертежи. Доказывать теоремы старайтесь самостоятельно.

Программа по геометрии.

1. Треугольники. Элементы треугольника. Вершины и стороны. Высоты, медианы, биссектрисы (определения).

2. Построение треугольника: практические задания.
а) Три стороны треугольника равны  и  сантиметров соответственно. Постройте треугольник с помощью циркуля и линейки.
б) В треугольнике угол  равен  градусов, сторона  равна двум,  равна . Постройте треугольник .
в) В треугольнике сторона  равна , угол  равен , угол  равен . Постройте треугольник .

3. Три признака равенства треугольников. Неравенство треугольника.

4. Постройте с помощью циркуля и линейки:
а) серединный перпендикуляр к отрезку;
б) биссектрису угла.

5. Углы при параллельных прямых и секущей. Вертикальные, смежные, соответственные, односторонние и накрест лежащие углы. Их определение и свойства.

6. Теорема о сумме углов треугольника.

7. Внешний угол треугольника.

8. Постройте в одном и том же треугольнике
а) три высоты. Рассмотрите также случаи тупоугольного и прямоугольного треугольника.
б) три биссектрисы.
в) три медианы.

9. Равнобедренный треугольник. Определение и свойства. Высота в равнобедренном треугольнике.

10. Средняя линия треугольника и ее свойства.

11. Прямоугольный треугольник. Теорема Пифагора.

12. Определения синуса, косинуса и тангенса
— для острого угла прямоугольного треугольника
— для произвольного угла.

13. Четырехугольники. Сумма углов четырехугольника.

14. Параллелограмм. Определение и свойства. Площадь параллелограмма.

15. Виды параллелограммов и их свойства. (ромб, прямоугольник, квадрат).

16. Трапеция. Средняя линия трапеции. Площадь трапеции.

17. Подобные треугольники. Три признака подобия треугольников.

18. Площадь треугольника. Формулы    и  .

19. Теоремы синусов и косинусов.

20. Чему равно отношение площадей подобных фигур.

21. Свойство медианы (в каком отношении делятся медианы в точке пересечения?)

22. Свойство биссектрисы (в каком отношении биссектриса делит противоположную сторону?)

23. Окружность и круг. Длина окружности. Площадь круга. Длина дуги и площадь сектора.

24. Теорема о радиусе, проведенном в точку касания.

25. Центральный и вписанный углы. Связь между ними.

26. Теоремы о вписанных углах.

27. Теорема о пересекающихся хордах.

28. Теорема об отрезках длин касательных, проведенных из одной точки.

29. Теорема о секущей и касательной.

30. Дан треугольник . Постройте
а) окружность, вписанную в данный треугольник
б) окружность, описанную вокруг данного треугольника.
Где находятся центры этих окружностей?

31. Еще три формулы площади треугольника (через радиус вписанной окружности, через радиус описанной окружности и формула Герона).

32. Когда можно вписать окружность в четырехугольник? Когда — описать вокруг четырехугольника?

(Программа по стереометрии будет размещена в ближайшее время.)

Отдельно — тема «Векторы». Напомним, что на ЕГЭ по математике векторы встречаются в задаче . Они также пригодятся вам в решении задачи .

Освоив теорию, можно приступать к решению сложных задач по геометрии, входящих в часть  ЕГЭ. Мы рекомендуем вам сборники:
Р. К. Гордин «ЕГЭ 2012. Математика. Задача . Геометрия. Планиметрия» и
А. Г. Корянов и А. А. Прокофьев «Пособие по решению заданий типа ». Можно найти на сайте alexlarin.net.

Разбирая и решая задания ЕГЭ по геометрии, вы заметите очень интересную вещь. Простые задачи из части , разобранные на нашем сайте, часто оказываются базовыми схемами, на которых строятся сложные .

Решая на ЕГЭ задачи  по геометрии, обращайте особое внимание на оформление. Помните совет, который дал абитуриентам автор бестселлера «Математика — абитуриенту» В. В. Ткачук. Вот он, этот ценнейший совет:

«Подробность решения должна быть такова, чтобы его мог понять человек в 10 (десять) раз глупее вас».

Если вы живете в Москве — приходите к нам на занятия. Геометрия на ЕГЭ станет для вас темой, где вы будете чувствовать себя уверенно.

Звоните нам: (495) 984 09 27 Образовательная компания «МастерВУЗ».
Или нажмите на кнопку «Запишитесь в группу», чтобы заполнить контактную форму. Мы обязательно вам перезвоним.

Звоните нам: +7 (495) 984-09-27, +7 (800) 775-06-82 (бесплатный звонок по России)

Или нажмите на кнопку «Записаться на тестирование», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Записаться на тестирование

Полезные материалы для ЕГЭ в нашей рассылке. Обучающее видео бесплатно!

Ссылка на обучающее видео придет Вам по e-mail.