Сдай ЕГЭ! Бесплатные материалы для подготовки каждую неделю!
null
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных согласно 152-ФЗ. Подробнее
banner
Slider
previous arrow
next arrow
Slider

5. Задание 7. Кодирование информации

Кодирование звуковой информации

При оцифровке звука в памяти запоминаются только отдельные значения сигнала. Чем чаще записывается сигнал, тем лучше качество записи.
Частота дискретизации f – это количество раз в секунду, которое происходит преобразование аналогового звукового сигнала в цифровой. Измеряется в Герцах (Гц).
Глубина кодирования (а также, разрешение) – это количество бит, выделяемое на одно преобразование сигнала. Измеряется в битах (Бит).
Возможна запись нескольких каналов: одного (моно), двух (стерео), четырех (квадро).
Обозначим частоту дискретизации – f (Гц), глубину кодирования – B(бит), количество каналов – k, время записи – t(Сек).
Количество уровней дискретизации d можно рассчитать по формуле: d = 2B.
Тогда объем записанного файла V(бит) = f * B * k * t.
Или, если нам дано количество уровней дискретизации, V(бит) = f * log2d * k * t.
Единицы измерения объемов информации:
1 б (байт) = 8 бит
1 Кб (килобайт) = 210 б
1 Мб (мегабайт) = 220 б
1 Гб (гигабайт) = 230 б
1 Тб (терабайт) = 240 б
1 Пб (петабайт) = 250 б

Задача 1

1) Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и глубиной кодирования 32 бит. Запись длится 12 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?
1) 30 2) 45 3) 75 4) 90

Решение:
V(бит) = f(Гц)* B(бит) * k * t(Сек),
где V – размер файла, f – частота дискретизации, B – глубина кодирования, k – количество каналов, t – время.
Значит, V(Мб) = (f * B * k * t ) / 223
Переведем все величины в требуемые единицы измерения:
V(Мб) = (16*1000 * 32 * 2 * 12 * 60 ) / 223
Представим все возможные числа, как степени двойки:
V(Мб) = (24 * 23 * 125 * 25 * 2 * 22 * 3 * 15 * 22) / 223 = (5625 * 217) / 223 = 5625 / 26 = 5625 / 64 ≈ 90.
Ответ: 4
!!! Без представления чисел через степени двойки вычисления становятся намного сложнее.
!!! Частота – это физическая величина, а потому 16 кГц = 16 * 1000 Гц, а не 16 * 210. Иногда этой разницей можно пренебречь, но на последних диагностических работах она влияла на правильность ответа.

Задача 2

Производится одноканальная (моно) звукозапись с частотой дискретизации 128 Гц. При записи использовались 64 уровня дискретизации. Запись длится 6 минут 24 секунд, её результаты записываются в файл, причём каждый сигнал кодируется минимально возможным и одинаковым количеством битов. Какое из приведённых ниже чисел наиболее близко к размеру полученного файла, выраженному в килобайтах?
1) 24 2) 36 3) 128 4) 384

Решение:
V(бит) = f * log2d * k * t, где V – размер файла, f – частота дискретизации, d – количество уровней дискретизации, k – количество каналов, t – время.
Переведем все величины в требуемые единицы измерения и представим все возможные числа, как степени двойки:
V(Кб) = (f * log2d * k * t) / 213 = (128 * log264 * 1 * 384) / 213 = (27 * 6 * 3 * 27) / 213 = 9 * 4 = 36
Ответ: 2

Задача 3

В те­че­ние трех минут про­из­во­ди­лась четырёхка­наль­ная (квад­ро) зву­ко­за­пись с ча­сто­той дис­кре­ти­за­ции 16 КГц и 24-бит­ным раз­ре­ше­ни­ем. Сжа­тие дан­ных не про­из­во­ди­лось. Какая из при­ве­ден­ных ниже ве­ли­чин наи­бо­лее близ­ка к раз­ме­ру по­лу­чен­но­го файла?

1) 25 Мбайт
2) 35 Мбайт
3) 45 Мбайт
4) 55 Мбайт

Решение:
V(бит) = f(Гц)* B(бит) * k * t(Сек),
где V – размер файла, f – частота дискретизации, B – глубина кодирования (или разрешение), k – количество каналов, t – время.
Значит, V(Мб) = (f * B * k * t ) / 223 = (16 * 1000 * 24 * 4 * 3 * 60) / 223 = (24 * 23 * 125 * 3 * 23 * 22 * 3 * 15 * 22) / 223 = (125 * 9 * 15 * 214) / 223 = 16875 / 29 = 32, 96 ≈ 35
Ответ: 2

Задача 4

Ана­ло­го­вый зву­ко­вой сиг­нал был записан сна­ча­ла с ис­поль­зо­ва­ни­ем 64 уров­ней дис­кре­ти­за­ции сиг­на­ла, а затем с ис­поль­зо­ва­ни­ем 4096 уров­ней дис­кре­ти­за­ции сиг­на­ла. Во сколь­ко раз уве­ли­чил­ся ин­фор­ма­ци­он­ный объем оциф­ро­ван­но­го звука?
1) 64
2) 8
3) 2
4) 12

Решение:
V(бит) = f * log2d * k * t, где V – размер файла, f – частота дискретизации, d – количество уровней дискретизации, k – количество каналов, t – время.
V1 = f * log264 * k * t = f * 6 * k * t
V2 = f * log24096 * k * t = f * 12 * k * t
V2 / V1 = 2
Пра­виль­ный ответ ука­зан под но­ме­ром 3.
Ответ: 3

Задача 5

Проводилась одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. В результате был получен файл размером 3 Мбайт, сжатие данных не производилось. Какая из приведенных ниже величин наиболее близка к времени, в течение которого проводилась запись?
1) 30 сек 2) 60 сек 3) 90 сек 4) 120 сек

Решение:
V(бит) = f(Гц)* B(бит) * k * t(Сек),
где V – размер файла, f – частота дискретизации, B – глубина кодирования, k – количество каналов, t – время.
Значит, время t = V / (f * B * k) = (3 * 223) / (24 * 1000 * 3 * 23 * 1) = (3 * 223) / (24 *23 * 125 * 3 * 23 * 1) = 213 / 125 = 65,5 ≈ 60 сек.
Ответ: 2

Кодирование графической информации

При оцифровке графического изображения качество картинки зависит от количества точек и количества цветов, в которые можно раскрасить точку.
Если X – количество точек по горизонтали,
Y – количество точек по вертикали,
P – глубина цвета (количество бит, отводимых для кодирования одной точки), то количество различных цветов в палитре N = 2I. Соответственно, I = log2N.
Тогда объем файла, содержащего изображение, V(бит) = X * Y * P.
Или, если нам дано количество цветов в палитре, V(бит) = X * Y * log2N.

Задача 6

Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64×64 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
Решение:
V(бит) = X * Y * log2N, где V – объем памяти, X,Y – количество пикселей по горизонтали и вертикали, N – количество цветов.
V (Кб) = (64 * 64 * log2256) / 213 = 212 * 8 / 213 = 4
Ответ: 4

Задача 7

Для хранения растрового изображения размером 64x32 пикселя отвели 1 килобайт памяти. Каково максимально возможное число цветов в палитре изображения?

Решение:
V(бит) = X * Y * log2N, где V – объем памяти, X,Y – количество пикселей по горизонтали и вертикали, N – количество цветов.
log2N = V /( X*Y) = 213 / (26 * 25) = 4
N = 16
Ответ: 16

Задача 8

Цвет пикселя монитора определяется тремя составляющими: зеленой, синей и красной. Под красную и синюю составляющие одного пикселя отвели по пять бит. Сколько бит отвели под зеленую составляющую одного пикселя, если растровое изображение размером 8x8 пикселей занимает 128 байт памяти?

Решение:
Изображение 8х8 = 64 пикселя занимает 128 байт, значит, один пиксель занимает 2 байта = 16 бит. Под красную и синюю составляющую отвели по 5 бит, значит под зеленую осталось 6 бит.
Ответ: 6

Задача 9

Цвет пикселя, формируемого принтером, определяется тремя составляющими: голубой, пурпурной и желтой. Под каждую составляющую одного пикселя отвели по четыре бита. В какое количество цветов можно раскрасить пиксель?

Решение:
Раз под каждую из трех составляющих отвели по 4 бита, значит, под пиксель отведено всего 12 бит. Количество цветов, в которое можно раскрасить пиксель = 212 = 4096.
Ответ: 4096

Задача 10

В процессе преобразования растрового графического изображения количество цветов уменьшилось с 65536 до 16. Во сколько раз уменьшится информационный объем графического файла?

Решение:
V(бит) = X * Y * log2N, где V – объем памяти, X,Y – количество пикселей по горизонтали и вертикали, N – количество цветов.
V1 = X * Y * log265536 = X * Y * 16
V2 = X * Y * log216 = X * Y * 4
V1 / V2 = 4
Ответ: 4

Передача данных

Скорость передачи информации по каналу связи (пропускная способность канала) вычисляется как количество информации в битах, переданное за 1 секунду (бит/с).
Объем переданной информации вычисляется по формуле V = q * t, где q – пропускная способность канала, а t – время передачи.

Задача 11

До­ку­мент объ­е­мом 5 Мбайт можно пе­ре­дать с од­но­го ком­пью­те­ра на дру­гой двумя спо­со­ба­ми:
А) Сжать ар­хи­ва­то­ром, пе­ре­дать архив по ка­на­лу связи, рас­па­ко­вать.
Б) Пе­ре­дать по ка­на­лу связи без ис­поль­зо­ва­ния ар­хи­ва­то­ра.
Какой спо­соб быст­рее и на­сколь­ко, если
– сред­няя ско­рость пе­ре­да­чи дан­ных по ка­на­лу связи со­став­ля­ет 218 бит в се­кун­ду,
– объем сжа­то­го ар­хи­ва­то­ром до­ку­мен­та равен 80% от ис­ход­но­го,
– время, тре­бу­е­мое на сжа­тие до­ку­мен­та – 35 се­кунд, на рас­па­ков­ку – 3 се­кун­ды?
В от­ве­те на­пи­ши­те букву А, если спо­соб А быст­рее или Б, если быст­рее спо­соб Б. Сразу после буквы на­пи­ши­те ко­ли­че­ство се­кунд, на­сколь­ко один спо­соб быст­рее дру­го­го. Так, на­при­мер, если спо­соб Б быст­рее спо­со­ба А на 23 се­кун­ды, в от­ве­те нужно на­пи­сать Б23. Слов «се­кунд», «сек.», «с.» к от­ве­ту до­бав­лять не нужно.

Решение:
Спо­соб А. Общее время скла­ды­ва­ет­ся из вре­ме­ни сжа­тия, рас­па­ков­ки и пе­ре­да­чи. Время пе­ре­да­чи t рас­счи­ты­ва­ет­ся по фор­му­ле t = V / q, где V — объём ин­фор­ма­ции, q — скорость пе­ре­да­чи дан­ных.
Объем сжатого документа: 5 * 0,8 = 4 Мб =4 * 223 бит.
Найдём общее время: t = 35 с + 3 с + 4 * 223 бит / 218 бит/с = 38 + 27 с = 166 с.
Спо­соб Б. Общее время сов­па­да­ет с вре­ме­нем пе­ре­да­чи: t = 5 * 223 бит / 218 бит/с = 5 * 25 с = 160 с.
Спо­соб Б быст­рее на 166 - 160 = 6 с.
Ответ: Б6

Задача 12

Ско­рость пе­ре­да­чи дан­ных через ADSL─со­еди­не­ние равна 128000 бит/c. Через дан­ное со­еди­не­ние пе­ре­да­ют файл раз­ме­ром 625 Кбайт. Опре­де­ли­те время пе­ре­да­чи файла в се­кун­дах.

Решение:
Время t = V / q, где V — объем файла, q — скорость пе­ре­да­чи дан­ных.
t = 625 * 210 байт / (27 * 1000) бит/c = 625 * 213 бит / (125 * 210) бит/c = 5 * 23 с = 40 с.
Ответ: 40

Задача 13

Сколько секунд потребуется модему, передающему сообщения со скоростью 28800 бит/с, чтобы передать 100 страниц текста в 30 строк по 60 символов каждая, при условии, что каждый символ кодируется 1 байтом?

Решение:
Время t = V / q, где V — объем файла, q — скорость пе­ре­да­чи дан­ных.
t = (100 * 30 * 60 * 8 бит) / (28800 бит/с) = 50 с.
Ответ: 50

Задача 14

Сколько секунд потребуется модему, передающему сообщения со скоростью 19200 бит/с, чтобы передать цветное растровое изображение размером 1280 на 800 пикселей, при условии, что цвет каждого пикселя кодируется 24 битами?

Решение:
Время t = V / q, где V — объем файла, q — скорость пе­ре­да­чи дан­ных.
V = X * Y * I, где X, Y – количество пикселей по горизонтали и вертикали, I – количество бит, выделяемое под один пиксель.
t = (1280 * 800 * 24 бит) / (19200 бит/с) = 1280 с.
Ответ: 1280

Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «5. Задание 7. Кодирование информации» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена: 07.06.2023

Поделиться страницей

Это полезно

Теория вероятностей на ЕГЭ-2023 по математике
В варианте ЕГЭ-2023 две задачи по теории вероятностей — это №3 и №4. По заданию 4 в Интернете почти нет доступных материалов. Но в нашем бесплатном мини-курсе все это есть.
ЕГЭ Математика
Разбор ЕГЭ-2023 по математике.
Как готовиться к ЕГЭ-2024?