Сдай ЕГЭ! Бесплатные материалы для подготовки каждую неделю!
null
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных согласно 152-ФЗ. Подробнее
banner
Slider
previous arrow
next arrow
Slider

Касательная к окружности

Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.

Расскажем подробнее, что такое касательная и секущая.

Напомним, что расстояние от точки до прямой — это длина перпендикуляра, опущенного из точки на прямую.

Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая является касательной к окружности. В этом случае она имеет с окружностью ровно одну общую точку. Такую прямую называют касательной к окружности.

Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая пересекает окружность в двух точках. Такую прямую называют секущей.

Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая не имеет с окружностью общих точек.

Запишем основные теоремы о касательных. Они помогут нам при решении задач ЕГЭ и ОГЭ.

Теорема 1.

Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

На рисунке радиус OA перпендикулярен прямой m.

Теорема 2. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Доказательство:

Дана окружность с центром O.

Прямые AB и AC — касательные, точки B и C — точки касания. Докажем, что
AB = AC и \angle BAO=\angle CAO

Проведем радиусы OB и OC в точки касания.

По свойству касательной, OB\bot AB и OC\bot AC.

В прямоугольных треугольниках AOB и AOC катеты OB и OC равны как радиусы одной окружности, AO — общая гипотенуза. Следовательно, треугольники AOB и AOC равны по гипотенузе и катету. Отсюда AB = AC и \angle BAO=\angle CAO.

Теорема 3. Отрезки касательных, проведенных к окружности из одной точки, равны.

Доказательство:

Пусть из точки A к окружности проведены касательные AB и AC. Соединим точку A с центром окружности точкой O. Треугольники AOB и AOC равны по гипотенузе и катету, следовательно, AB = AC.

Теорема 4. Угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.

Угол ACМ на рисунке равен половине угловой величины дуги AC.

Доказательство теоремы здесь.

Теорема 5, о секущей и касательной.

Если из одной точки к окружности проведены секущая и касательная, то произведение всей секущей на ее внешнюю часть равно квадрату отрезка касательной.

MC^2 = MA \cdot MB.

Доказательство теоремы смотрите здесь.

Разберем задачи ЕГЭ и ОГЭ по теме: Касательная к окружности.

Задача 1.

Угол ACO равен 28^{\circ}, где O — центр окружности. Его сторона CA касается окружности. Найдите величину меньшей дуги AB окружности, заключенной внутри этого угла. Ответ дайте в градусах.

Рисунок к задаче 1

Решение:

Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Значит, угол CAO — прямой. Из треугольника ACO получим, что угол AOC равен 62 градуса. Bеличина центрального угла равна угловой величине дуги, на которую он опирается, значит, величина дуги AB— тоже 62 градуса.

Ответ: 62.

Задача 2.

Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, а большая дуга AD окружности, заключенная внутри этого угла, равна 116^{\circ}. Ответ дайте в градусах.

Рисунок к задаче 2

Решение:

Это чуть более сложная задача. Центральный угол AOD опирается на дугу AD, следовательно, он равен 116 градусов. Тогда угол AOC равен 180^{\circ}-116^{\circ}=64^{\circ}. Касательная перпендикулярна радиусу, проведенному в точку касания, значит, угол OAC — прямой. Тогда угол ACO равен 90^{\circ}-64^{\circ}=26^{\circ}.

Ответ: 26.

Задача 3.

Хорда AB стягивает дугу окружности в 92^{\circ}. Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.

Рисунок к задаче 3

Решение:

Проведем радиус OB в точку касания, а также радиус OA. Угол OBC равен 90^{\circ}. Треугольник BOA — равнобедренный. Нетрудно найти, что угол OBA равен 44 градуса, и тогда угол CBA равен 46 градусов, то есть половине угловой величины дуги AB.

Мы могли также воспользоваться теоремой: Угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.

Задача 4.

К окружности, вписанной в треугольник ABC, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника.

Рисунок к задаче 5

Решение:

Вспомним еще одно важное свойство касательных к окружности:
Отрезки касательных, проведенных из одной точки, равны.
Периметр треугольника — это сумма всех его сторон. Обратите внимание на точки на нашем чертеже, являющиеся вершинами шестиугольника. Из каждой такой точки проведены два отрезка касательных к окружности. Отметьте на чертеже такие равные отрезки. Еще лучше, если одинаковые отрезки вы будете отмечать одним цветом. Постарайтесь увидеть, как периметр треугольника ABC складывается из периметров отсеченных треугольников.

Ответ: 24.

Вот более сложная задача из вариантов ЕГЭ:

Задача 5.

Около окружности описан многоугольник, площадь которого равна 5. Его периметр равен 10. Найдите радиус этой окружности.

Рисунок к задаче 6

Решение:

Обратите внимание — в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке.
Окружность касается всех сторон многоугольника. Отметьте центр окружности — точку O — и проведите перпендикулярные сторонам радиусы в точки касания.

Соедините точку O с вершинами A, B, C, D, E. Получились треугольники AOB, BOC, COD, DOE и EOA.

Очевидно, что площадь многоугольника S=S_{AOB} + S_{BOC}+S_{COD}+S_{DOE}+S_{EOA}.

Треугольники АОВ, ВОС, COD, DOE и ЕОА имеют равные высоты, причем все эти высоты равны радиусу окружности.

S_{ABCD}=S_{\vartriangle AOB}+S_{\vartriangle BOC}+S_{\vartriangle COD}+S_{\vartriangle DOE}+S_{\vartriangle EOA}=

=\displaystyle \frac{1}{2}AB\cdot r+\displaystyle \frac{1}{2}BC\cdot r+\displaystyle \frac{1}{2}CD\cdot r+\displaystyle \frac{1}{2}DE\cdot r+\displaystyle \frac{1}{2}AE\cdot r=

=\displaystyle \frac{1}{2}\cdot r\cdot \left(AB+BC+CD+DE+EA\right)=\displaystyle \frac{1}{2}P\cdot r=p\cdot r, где p — полупериметр многоугольника.

По условию, P = 10, S = 5, тогда r=\displaystyle \frac{S}{p}=\displaystyle \frac{5}{5}=1.

Ответ: 1

Задачи ЕГЭ

1. Угол ACO равен {27}^\circ, где O — центр окружности. Его сторона CA касается окружности. Сторона CO пересекает окружность в точке B . Найдите величину меньшей дуги AB окружности. Ответ дайте в градусах.

Решение:

По условию, CA — касательная, A — точка касания.

OA\bot AC. Треугольник ACO — прямоугольный, \angle AOC=90{}^\circ -\angle ACO=90{}^\circ -27{}^\circ =63{}^\circ .

Угол \angle AOB — центральный, и он равен угловой величине дуги AB, на которую опирается. Значит, градусная мера дуги AB равна 63{}^\circ . Это меньшая дуга AB, а большая — с другой стороны от точек A и B, и она больше 180 градусов.

Ответ: 63.

2. Через концы A и B дуги окружности с центром O проведены касательные AC и BC. Меньшая дуга AB равна {58}^\circ. Найдите угол ACB. Ответ дайте в градусах.

Решение:

Центральный угол AOB равен угловой величине дуги, на которую он опирается, то есть 58{}^\circ .

AC и BC — касательные, поэтому \angle OAC=\angle OBC=90{}^\circ , поскольку касательная перпендикулярна радиусу, проведенному в точку касания.

Сумма углов четырехугольника ACBO равна 360{}^\circ .

\angle ACB=360{}^\circ -90{}^\circ -90{}^\circ -58{}^\circ =122{}^\circ

Ответ: 122.

3. Хорда AB стягивает дугу окружности в {92}^\circ. Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.

Решение:

Применим теорему об угле между касательной и хордой.

Угол между касательной и хордой равен половине угловой величины дуги, заключённой между ними.

Значит, угол ABC равен 46{}^\circ .

Ответ: 46.

4. Через концы A и B дуги окружности с центром О проведены касательные AC и BC. Угол CAB равен 32{}^\circ. Найдите угол AOB. Ответ дайте в градусах.

Угол между касательной и хордой равен половине угловой величины дуги, заключённой между ними.

Поэтому меньшая дуга AB окружности равна 64{}^\circ. Центральный угол равен угловой величине дуги, на которую он опирается, значит, угол AOB равен 64{}^\circ.

Мы могли бы решить задачу и по-другому, рассматривая четырехугольник ACBO, как в задаче 2.

Ответ: 64.

5. Через концы A, B дуги окружности в {62}^\circ проведены касательные AC и BC. Найдите угол ACB. Ответ дайте в градусах.

Решение:

Угол между касательной и хордой равен половине угловой величины дуги, заключенной между ними. В треугольнике ABC:

\angle ACB=180{}^\circ -\left(\angle BAC+\angle CBA\right)=

=180{}^\circ -\cup AB=180{}^\circ -62{}^\circ =118{}^\circ

Ответ: 118.

6. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, сторона CO пересекает окружность в точках B и D, а дуга AD окружности, заключенная внутри этого угла, равна 116{}^\circ. Ответ дайте в градусах.

Решение:

По условию, DB — диаметр окружности, поэтому дуга AВ, не содержащая точки D, равна 180{}^\circ - 116{}^\circ = 64{}^\circ. На эту дугу опирается центральный угол AOB, он равен 64{}^\circ. Треугольник AOC прямоугольный, так как касательная CA перпендикулярна радиусу ОA, проведенному в точку касания.

\angle ACO=90{}^\circ -\angle COA=90{}^\circ -64{}^\circ =26{}^\circ .

Ответ: 26.

Задачи ОГЭ по теме: Касательная к окружности

1. К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.

Решение:

Отрезок OB — радиус, проведённый в точку касания, поэтому AB и OB перпендикулярны, треугольник AOB — прямоугольный. По теореме Пифагора:

{OB}^2={AO}^2-{AB}^2

{{OB}^2=13}^2-{12}^2=169-144=25;\; OB=5

Ответ: 5.

2. Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный {83}^\circ. Найдите величину угла OMK. Ответ дайте в градусах.

Решение:

Касательная перпендикулярна радиусу, проведенному в точку касания, поэтому угол OКD — прямой. Тогда \ \angle OKM\ =\ 90{}^\circ - 83{}^\circ = 7{}^\circ . Треугольник OMK — равнобедренный, его стороны OК и OМ являются радиусами окружности, поэтому \angle OMK\ =\angle \ OKM= 7{}^\circ

Ответ: 7.

3. Отрезок AB = 40 касается окружности радиуса 75 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.

Решение:

Касательная перпендикулярна радиусу, проведенному в точку касания, значит, треугольник AOB — прямоугольный. Из прямоугольного треугольника AOB по теореме Пифагора найдём AO:

AO=\sqrt{{AB}^2+{OB}^2}=\sqrt{{40}^2+{75}^2}=\sqrt{5^2\left(8^2+{15}^2\right)}=

=5\cdot 17=85

AD=AO\ -\ OD=85-\ 75=10.

Ответ: 10.

4. На отрезке AB выбрана точка C так, что AC = 75 и BC = 10. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.

Решение:

Проведём радиус AH в точку касания. Касательная перпендикулярна радиусу, проведенному в точку касания, поэтому треугольник ABН — прямоугольный. Из прямоугольного треугольника ABH по теореме Пифагора найдём BH:

BH=\sqrt{{AB}^2-{AH}^2}=\sqrt{{\left(AC+CB\right)}^2-{AH}^2}=\sqrt{{85}^2-{75}^2}=

=\sqrt{5^2\left({17}^2-{15}^2\right)}=40

Ответ: 40.

5. Касательные в точках A и B к окружности с центром O пересекаются под углом {72}^\circ. Найдите угол ABO. Ответ дайте в градусах.

Решение:

Касательные, проведённые к окружности из одной точки, равны, поэтому AC=BC и треугольник ABC — равнобедренный.

\angle CAB=\angle CBA=\displaystyle \frac{180{}^\circ -\angle ACB}{2}=54{}^\circ

Угол между касательной и хордой равен половине угловой величины дуги, заключенной между ними, значит, дуга AB равна {108}^\circ. Угол AOB — центральный, он равен дуге, на которую опирается, то есть {108}^\circ. Треугольник AOB равнобедренный,

\angle OAB=\angle ABO=\displaystyle \frac{180{}^\circ -108{}^\circ }{2}=36{}^\circ

Ответ: 36.

6. Из точки A проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен {60}^\circ, а расстояние от точки A до точки O равно 8.

Решение:

Проведём радиусы OB и OC в точки касания. Треугольники AOB и AOC — прямоугольные. Эти треугольники равны по катету и гипотенузе.

OB — OC как радиусы окружности, гипотенуза общая. Значит,

\angle BAO=\angle OAC=\displaystyle \frac{60{}^\circ }{2}=30{}^\circ

Из треугольника AOB найдём OB, то есть радиус окружности.

OB=AO\cdot {\sin 30{}^\circ \ }=8\cdot \displaystyle \frac{1}{2}=4

Ответ: 4.

7. Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB = 2, AC = 8. Найдите AK.

Решение:

По теореме о секущей и касательной, {AK}^2=AB\cdot AC,

AK=\sqrt{AB\cdot AC}=\sqrt{2\cdot 8}=4

Ответ: 4.

8. На окружности отмечены точки A и B так, что меньшая дуга AB равна {72}^\circ. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Решение:

Угол между касательной и хордой равен половине угловой величины дуги, заключенной между ними.

\angle ABC = 72{}^\circ : 2 = 36{}^\circ .

Ответ: 36.

Поделиться страницей

Это полезно

Задача 18 на числа и их свойства
В этой статье мы расскажем, какие непростые и нестандартные задачи встречались на ЕГЭ-2022 по математике.
Математика «100 баллов»
Задачи на числа и их свойства.
Олимпиадные методы решения!