Квадрат — определение и свойства
Квадрат — это прямоугольник, у которого все стороны равны.
Можно дать и другое определение квадрата:
квадрат — это ромб, у которого все углы прямые.
Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.
Квадрат относится к правильным многоугольникам. У правильного многоугольника все стороны равны и все углы равны.
Перечислим свойства квадрата:
- Все углы квадрата — прямые, все стороны квадрата — равны.



- Диагонали квадрата равны и пересекаются под прямым углом.


- Диагонали квадрата делятся точкой пересечения пополам.

- Диагонали квадрата являются биссектрисами его углов (делят его углы пополам).


- Диагонали квадрата делят его на 4 равных прямоугольных равнобедренных треугольника:


Периметр квадрата P в 4 раза больше его стороны и равен: 
Площадь квадрата равна квадрату его стороны:
.
Теорема 1. Диагональ квадрата равна произведению его стороны на
, то есть
.
Доказательство:
Рассмотрим квадрат ABCD. Проведем диагональ квадрата AC.
Треугольник АВС – прямоугольный с гипотенузой АС. Запишем для треугольника АВС теорему Пифагора:

что и требовалось доказать.

Теорема 2. Радиус вписанной в квадрат окружности равен половине его стороны:


Доказательство:
Пусть окружность с центром в точке О и радиусом r вписана в квадрат АВСD и касается его сторон в точках
P, M, N, K.
Тогда
поскольку AB параллельно CD. Через точку О можно провести только одну прямую, перпендикулярную АВ, поэтому точки Р, О и N лежат на одной прямой. Значит, PN – диаметр окружности. Поскольку АРND – прямоугольник, то PN = AD, то есть
, что и требовалось доказать.
Теорема 3. Радиус описанной около квадрата окружности равен половине его диагонали:

Доказательство:
Диагонали квадрата АС и BD равны, пересекаются в точке О и делятся точкой пересечения пополам. Поэтому OA=OB=OC=OD, т.е. точки A, B, C и D лежат на одной окружности, радиус которой R = d/2 (d=AC=BD). Это и есть описанная около квадрата АВСD окружность.
По теореме 
Тогда
, что и требовалось доказать.

Заметим, что периметр квадрата тоже можно связать с радиусами вписанной и описанной окружностей:

Четырехугольник является квадратом, если выполняется хотя бы одно из условий:
- Все стороны равны и среди внутренних углов есть прямой угол.
- Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.
Разберем несколько простых задач на тему «Квадрат». Все они взяты из Банка заданий ФИПИ.
Задача 1. Найдите сторону квадрата, диагональ которого равна
.
Решение:
Мы знаем, что
. Тогда
.
Ответ: 2.
Задача 2. Найдите площадь квадрата, если его диагональ равна 1.
Первый способ решения:

Зная связь между стороной и диагональю квадрата (теорема 1), выразим сторону квадрата через его диагональ:

Тогда по формуле площади квадрата:

Второй способ решения:
Воспользуемся формулой для площади ромба:

Ответ: 0,5
Задача 3. Найдите радиус окружности, описанной около квадрата со стороной, равной
.
Решение:

Радиус описанной окружности равен половине диагонали квадрата, поэтому

Ответ: 2.
Задача 4. Найдите сторону квадрата, описанного около окружности радиуса
.
Решение:

Диаметр окружности равен стороне квадрата:
.
Ответ: 8.
Задача 5. Радиус вписанной в квадрат окружности равен
. Найдите диагональ этого квадрата.
Решение:
Сторона квадрата в два раза больше радиуса вписанной окружности:

Диагональ найдем, зная сторону квадрата:

Ответ: 56.
Задача 6. Радиус вписанной в квадрат окружности равен
. Найдите радиус окружности, описанной около этого квадрата.
Решение:
Радиус окружности, вписанной в квадрат, равен половине стороны квадрата, а радиус описанной окружности равен половине диагонали квадрата:

Поэтому 
Ответ: 22.
Задача 7. Найдите периметр квадрата, если его площадь равна 9.
Решение:
Найдем сторону квадрата: 
Периметр квадрата со стороной 3 равен: 
Ответ: 12.
Задача 8. Найдите площадь квадрата, в который вписан круг площадью
.
Решение:
Площадь круга
откуда радиус круга равен 2.
Сторона квадрата в два раза больше радиуса вписанного круга и равна 4. Площадь квадрата равна 16.
Ответ: 16.
Задача 9. Найдите радиус окружности, вписанной в квадрат ABCD, считая стороны квадратных клеток равными
.

Решение:
Сторону квадрата найдем как диагональ другого квадрата со стороной 2 клеточки. Поскольку длина одной клеточки равна
., то сторона малого квадрата равна
. А сторона квадрата ABCD равна 
Радиус вписанной окружности в два раза меньше стороны квадрата и равен 2.
Ответ: 2.
Задача 10. Найдите радиус r окружности, вписанной в четырехугольник ABCD. В ответе укажите
.

Решение:
Считаем стороны клеток равными единице. Четырехугольник ABCD — квадрат. Все его стороны равны, все углы — прямые. Как и в предыдущей задаче, радиус окружности, вписанной в квадрат, равен половине его стороны.
Найдем на чертеже прямоугольный треугольник. По теореме Пифагора найдем сторону, например, AB.
Она равна
. Тогда радиус вписанной окружности равен
. В ответ запишем
.
Ответ: 5.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Квадратu0026nbsp;u0026mdash; определение иu0026nbsp;свойства» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
05.09.2023