previous arrow
next arrow
Slider

Профильный ЕГЭ по математике. Задание №8. Стереометрия

Задание 8 Профильного ЕГЭ по математике – это основы стереометрии. Это задачи на вычисление объемов и площадей поверхности многогранников и тел вращения.

Ничего сложного здесь нет. Все эти задачи доступны даже десятикласснику. И даже гуманитарию.

Как решать задания по стереометрии из первой части Профильного ЕГЭ?

Повторим формулы для вычисления объемов и площадей поверхности многогранников (призмы, пирамиды… ) и тел вращения (цилиндра, конуса и шара)

Проверим себя – умеем ли мы рисовать чертежи?

Посмотрим, как решаются простые задачи по стереометрии и задачи с секретами.

Запоминаем один из главных лайфхаков решения задач по стереометрии:

Отношение объемов подобных тел  равно кубу коэффициента подобия.

Если все линейные размеры объемного тела увеличить в k раз, то его площадь увеличится в k^2 раз, а объем в k^3 раз.

S_2=k^2 \cdot S_1

V_2=k^3 \cdot V_1

 

И решаем задачи. У нас все получится!

1. Во сколько раз увеличатся площадь поверхности и объем куба, если его ребро увеличить в два раза?

Отношение площадей поверхности подобных тел равно квадрату коэффициента подобия, а отношение объемов – кубу коэффициента подобия. При увеличении ребра в 2 раза площадь поверхности увеличится в 4 раза, а объем – в 8 раз.

2. Площадь основания конуса равна 18. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 3 и 6, считая от вершины. Найдите площадь сечения конуса этой плоскостью.

 

 

Плоскость, параллельная основанию, отсекает от конуса меньший конус, все линейные размеры которого в 3 раза меньше, чем у большого. Поэтому площадь сечения в 9 раз меньше площади основания. Она равна 2.

3. Объем пирамиды равен 10. Через середину высоты параллельно основанию пирамиды проведено сечение, которое является основанием меньшей пирамиды с той же вершиной. Найдите объем меньшей пирамиды.

 

 

Меньшая пирамида подобна большой, коэффициент подобия k=\frac{1}{2}. Отношение объемов  подобных тел равно кубу коэффициента подобия. Поэтому объем меньшей пирамиды в 8 раз меньше объема исходной пирамиды. Он равен  \frac{10}{8}=1,25.

4. Объём правильной четырёхугольной пирамиды SABCD равен 116. Точка E — середина ребра SB. Найдите объём треугольной пирамиды EABC.

 

Площадь основания пирамиды ЕАВС в 2 раза меньше, чем у пирамиды ABCDS. Высота пирамиды ЕАВС равна половине высоты пирамиды ABCDS. Значит, объем пирамиды ЕАВС в 4 раза меньше объема пирамиды ABCDS. Он равен \frac{116}{4}=29.

5. В правильной четырехугольной пирамиде SABCD точка E – середина ребра AB, боковое ребро SC равно 4, длина отрезка SE равна \sqrt{10}.  Найти объем пирамиды SABCD .

 

 

Найдем сторону основания пирамиды. По теореме Пифагора, для треугольника  SAE получаем, что AE=\sqrt{6}. Соответственно, сторона основания пирамиды равна 2\sqrt{6}. Если обозначить центр основания за H, то высоту пирамиды  найдем по теореме Пифагора для треугольника SHE – она равна 2.

Применяя формулу для объема пирамиды V=\frac{1}{3}S_{ABCD}\cdot h, получаем ответ: 16.

Многие задания №8 Профильного ЕГЭ по математике можно считать подготовительными – для того, чтобы научиться решать задачу 14 из второй части ЕГЭ.

Для решения некоторых из них стоит выучить основные определения и теоремы стереометрии. В общем, то, что входит в программу по стереометрии.

6. Стороны основания треугольной пирамиды равны 15, 16 и 17. Боковые ребра наклонены к плоскости основания под углами 45°. Найдите объем пирамиды.

Пусть точка О – проекция точки S на плоскость основания пирамиды. Прямоугольные треугольники АОS, ВОS, СОS равны (по общему катету ОS и острому углу). Значит, АО = ВО = СО. Точка О, равноудаленная от вершин основания, – это центр окружности, описанной вокруг треугольника АВС. Тогда АО = ВО = СО = OS = R, где R – радиус этой окружности.

Радиус описанной окружности найдем по формуле

R=\frac{abc}{4S};

Площадь \triangle ABC найдем по формуле Герона:

S_{\triangle ABC}=\sqrt{p(p-a)(p-b)(p-c)}, где p=\frac{15+16+17}{2}=24  – полупериметр.

S_{\triangle ABC}=\ \sqrt{24\cdot 9\cdot 8\cdot 7}=\sqrt{3\cdot 8\cdot 3\cdot 3\cdot 8\cdot 7}=24\sqrt{21};

R=\frac{15\cdot 16\cdot 17}{4\cdot 24\sqrt{21}}=\frac{5\cdot 17}{2\sqrt{21}};

V=\frac{1}{3}S_{\triangle ABC}\cdot OS=\frac{1}{3}\cdot 24\sqrt{21}\cdot \frac{5\cdot 17}{2\cdot \sqrt{21}}=\frac{5\cdot 17}{4}=\frac{85}{4}=21,25

Заметим, что если боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом, то вершина проецируется в центр основания.

7. В правильной треугольной призме ABCA_1B_1C_1, все ребра которой равны 3, найдите угол между прямыми AA_1 и  BC_1 Ответ дайте в градусах.

Угол между скрещивающимися прямыми равен углу между параллельными им прямыми, лежащими в одной плоскости. Поскольку CC_1 и AA_1 параллельны, найдем угол между CC_1 и BC_1. Он равен 45 градусов, так как грань   –  квадрат.

Ответ: 45.