previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 2. Задание 10. Решение

 

Условие задачи

Высота над землей подброшенного вверх мяча меняется по закону
h(t)=-5 t^2+9 t+2 , где h — высота в метрах, t — время в секундах, прошедшее с момента броска. Сколько процентов от времени всего полета мяч будет находиться на высоте не более 6 метров?

 

Решение

Запишем, что h(t) \leq 6:

-5 t^2+9 t+2 \leq 6

Построим график функции в левой части – то есть зависимость высоты мяча от времени.

Решим уравнение

-5 t^2+9 t+2=6

Его корни t_1 = 0,8 и t_2 = 1.

Мы видим, что через t_1=0,8 секунд после начала полёта мяч оказался на высоте 6 метров. Мяч продолжал лететь вверх, высота увеличивалась. Затем началось снижение, высота уменьшалась, и в момент времени t_2=1 снова стала равна 6 метрам над землей. Получается, что мяч находился на высоте не менее 6 метров в течение t=t_2- t_1=0,2 секунд.

Осталось найти время полета.

Полет мяча заканчивается, когда он падает на землю, то есть его высота становится равной нулю.

Решим квадратное уравнение -5 t^2+9 t+2=0

Его корни

t_1 = - 0,2; t_2 = 2. Значит, время полета равно 2 секунды. Из этих двух секунд мяч находился на высоте более 6 метров в течение 0,2 секунд, и это было 10% времени полета. Остальные 90% времени полета мяч был на высоте не более 6 метров.

 

Ответ: 90