

- **1.** Брусок массой $m_1=500~\mathrm{r}$ соскальзывает по наклонной плоскости с высоты h и, двигаясь по горизонтальной поверхности, сталкивается с неподвижным бруском массой $m_2=300~\mathrm{r}$. В результате абсолютно неупругого соударения общая кинетическая энергия брусков становится равной 2,5 Дж. Определите высоту наклонной плоскости h. Трением при движении пренебречь. Считать, что наклонная плоскость плавно переходит в горизонтальную.
- **2.** Воздушный шар имеет газонепроницаемую оболочку массой 400 кг и наполнен гелием. Какова масса гелия в шаре, если на высоте, где температура воздуха 17 °C, а давление $10^5\Pi a$, шар может удерживать в воздухе груз массой 225 кг? Считать, что оболочка шара не оказывает сопротивления изменению объёма шара.
- **3.** Два одинаковых теплоизолированных сосуда соединены короткой трубкой с краном. Объём каждого сосуда V=1 м³. В первом сосуде находится $v_1=1$ моль гелия при температуре $T_1=400~{\rm K}$; во втором $v_2=3$ моль аргона при температуре T_2 . Кран открывают. После установления равновесного состояния давление в сосудах p=5,4 кПа. Определите первоначальную температуру аргона T_2 .
- **4.** К однородному медному цилиндрическому проводнику длиной 40 м приложили разность потенциалов 10 В. Каким будет изменение температуры проводника за 15 с? Изменением сопротивления проводника и рассеянием тепла при его нагревании пренебречь. (Плотность меди $8,9 \cdot 10^3 \, \mathrm{kr/m^3}$, удельное сопротивление $1,7 \cdot 10^{-8} \, \mathrm{Om} \cdot \mathrm{m}$, удельная теплоёмкость $385 \, \mathrm{Дж/(kr \cdot K)}$.)
- **5.** Источник постоянного тока с внутренним сопротивлением $r=0.4~\rm Om$ подсоединён к параллельно соединённым резисторам $R_1=10~\rm Om$, $R_2=2~\rm Om$ и конденсатору ёмкости $C=5~\rm mk\Phi$. Определите ЭДС источника ε , если энергия электрического поля конденсатора $W=10~\rm mkДж$.

6. Ион ускоряется в электрическом поле с разностью потенциалов $U=10~\mathrm{kB}$ и попадает в однородное магнитное поле перпендикулярно к вектору его индукции \vec{B} (см. рисунок). Радиус траектории движения иона в магнитном поле $R=0,2~\mathrm{m}$, модуль индукции магнитного поля $B=0,5~\mathrm{T}$ л. Определите отношение массы иона к его электрическому заряду $\frac{m}{q}$. Кинетической энергией иона при его вылете из источника пренебрегите.

