Slider

Уравнение состояния идеального газа

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: модель идеального газа, связь между давлением и средней кинетической энергией теплового движения молекул идеального газа, связь температуры газа со средней кинетической энергией его частиц, уравнение p=nkT, уравнение Менделеева—Клапейрона.

Из трёх агрегатных состояний вещества наиболее простым для изучения является газообразное. В достаточно разреженных газах расстояния между молекулами намного больше размеров самих молекул (тогда как в жидкостях и твёрдых телах молекулы «упакованы» весьма плотно).Поэтому силы взаимодействия между молекулами таких газов очень малы.

Для описания разреженных газов в физике используется модель идеального газа. В рамках этой модели делаются следующие допущения.

1. Пренебрегаем размерами молекул. Иными словами, молекулы газа считаются материальными точками.
2. Пренебрегаем взаимодействием молекул на расстоянии.
3. Соударения молекул друг с другом и со стенками сосуда считаем абсолютно упругими.

Таким образом, идеальный газ — это газ, частицы которого являются не взаимодействующими на расстоянии материальными точками и испытывают абсолютно упругие соударения друг с другом и со стенками сосуда.

Средняя кинетическая энергия частиц газа

Оказывается, что ключевую роль в описании идеального газа играет средняя кинетическая энергия его частиц.

Частицы газа двигаются с разными скоростями. Пусть в газе содержится N частиц, скорости которых равны v_1, v_2, \ldots, v_N. Масса каждой частицы равна m_0. Кинетические энергии частиц:

E_1=\frac{\displaystyle m_0 v_1^2}{\displaystyle 2 \vphantom{1^a}}, E_2=\frac{\displaystyle m_0 v_2^2 }{\displaystyle 2 \vphantom{1^a}}, \ldots,E_N=\frac{\displaystyle m_0 v_N^2}{\displaystyle 2 \vphantom{1^a}}.

Средняя кинетическая энергия E частиц газа  это среднее арифметическое их кинетических энергий:

E=\frac{\displaystyle E_1+E_2+ \ldots+E_N}{\displaystyle N \vphantom{1^a}}= \frac{\displaystyle 1}{\displaystyle N \vphantom{1^a}}\left ( \frac{\displaystyle m_0 v_1^2}{\displaystyle 2 \vphantom{1^a}}+\frac{\displaystyle m_0 v_2^2}{\displaystyle 2 \vphantom{1^a}}+ \ldots + \frac{\displaystyle m_0 v_N^2}{\displaystyle 2 \vphantom{1^a}} \right ) =\frac{\displaystyle m_0}{\displaystyle 2 \vphantom{1^a}} \ \frac{\displaystyle v_1^2+v_2^2+ \ldots v_N^2}{\displaystyle N \vphantom{1^a}}.

Последний множитель — это средний квадрат скорости, обозначаемый просто v_2:

v_2=\frac{\displaystyle v_1^2+v_2^2+ \ldots v_N^2}{\displaystyle N \vphantom{1^a}}.

Тогда формула для средней кинетической энергии приобретает привычный вид:

E=\frac{\displaystyle m_0 v^2}{\displaystyle 2 \vphantom{1^a}}. (1)

Корень из среднего квадрата скорости называется средней квадратической скоростью:

v=\sqrt{ \frac{\displaystyle v_1^2+v_2^2+ \ldots v_N^2}{\displaystyle N \vphantom{1^a}}}.

Основное уравнение МКТ идеального газа

Cвязь между давлением газа и средней кинетической энергией его частиц называется основным уравнением молекулярно-кинетической теории идеального газа. Эта связь выводится из законов механики и имеет вид:

p= \frac{\displaystyle 2}{\displaystyle 3 \vphantom{1^a}} nE. \ \ (2)

где n — концентрация газа (число частиц в единице объёма). С учётом (1) имеем также:

p= \frac{\displaystyle 1}{\displaystyle 3 \vphantom{1^a}} m_0 nv^2. \ \ (3)

Что такое m_0n? Произведение массы частицы на число частиц в единице объёма даёт массу единицы объёма, то есть плотность: m_0n= \rho. Получаем третью разновидность основного уравнения:

p= \frac{\displaystyle 1}{\displaystyle 3 \vphantom{1^a}} \rho v^2. \ \ (4)

Энергия частиц и температура газа

Можно показать, что при установлении теплового равновесия между двумя газами выравниваются средние кинетические энергии их частиц. Но мы знаем, что при этом становятся равны и температуры газов. Следовательно, температура газа — это мера средней кинетической энергии его частиц.

Собственно, ничто не мешает попросту отождествить эти величины и сказать, что температура газа — это средняя кинетическая энергия его молекул. В продвинутых курсах теоретической физики так и поступают. Определённая таким образом температура измеряется в энергетических единицах — джоулях.

Но для практических задач удобнее иметь дело с привычными кельвинами. Связь средней кинетической энергии частиц и абсолютной температуры газа даётся формулой:

E= \frac{\displaystyle 3}{\displaystyle 2 \vphantom{1^a}} kT, \ \ (5)

где k=1,38 \cdot 10^{-23} Дж/К — постоянная Больцмана.

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить