Slider

Арифметическая прогрессия в задачах ОГЭ по математике

Анна Малкова

Арифметическая прогрессия — это последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и некоторого фиксированного числа d:

a_{n+1}= a_n+d, \, \, (n = 1,2,...).

Фиксированное число d называется разностью арифметической прогрессии.

Формула n-го члена арифметической прогрессии:

a_n=a_1+(n-1)d.

Сумма первых n членов арифметической прогрессии S_n=a_1+a_2+...+a_n

вычисляется по формуле:

S_n=\frac{(a_1+a_n)}{2}\cdot n=\frac{2a_1+(n-1)d}{2}\cdot n

Каждый член арифметической прогрессии, начиная со второго, есть среднее  арифметическое соседних: a_n=\frac{a_{n-1}+a_{n+1}}{2}.

1. Студент Василий задумал стать репетитором. Он рассчитал, что будет проводить ровно 4 занятия в месяц с каждым учеником и стоимость каждого занятия составит 1000 рублей.

а) Если в первый месяц у Василия 2 ученика и каждый месяц число учеников увеличивается на 1, то сколько заработает Василий за 12-й месяц работы?

б) Сколько всего заработает Василий за год (то есть за 12 месяцев работы)?

В первый месяц у Василия два ученика. Во второй – три ученика, в третий – четыре, в каждый следующий – на одного ученика больше. Число учеников Василия образует арифметическую прогрессию, где a_1=2 – первый член прогрессии, d = 1 – разность прогрессии.

По формуле n-ного члена арифметической прогрессии, a_n=a_1+(n-1)d.

Получим:

a_{12}=2+(12-1)\cdot 1=2+11=13.

а) Работая 12-й месяц, Василий обучает 13 учеников.

Проводя с каждым 4 занятия по 1000 рублей в месяц, Василий заработает за 12-й месяц 13\cdot 4=52 тысячи рублей.

б) Сколько всего заработает Василий за год? Суммы, которые Василий зарабатывает ежемесячно, также образуют арифметическую прогрессию, в которой n=12, c_1 =8  тысяч рублей, а c_{12} =52 тысячи рублей.

По формуле суммы арифметической прогрессии, S_n=\frac{(c_1+c_n)}{2}\cdot n.

S_{12}=\frac{\left(8+52\right)}{2}\cdot 12=360 тысяч рублей.

2. Проработав год репетитором, студент Василий обнаружил, что вместе с количеством учеников растут и его расходы на транспорт. В первый месяц Василий потратил на поездки к ученикам 800 рублей и каждый следующий месяц эта сумма увеличивалась на 300 рублей

Сколько денег потратил Василий на поездки к ученикам за весь год?

По условию, суммы денег, которые Василий тратит на поездки к ученикам, образуют арифметическую прогрессию, в которой a_1=800 и d=300.

По формуле суммы арифметической прогрессии, S_n=\frac{{2a}_1+\left(n-1\right)d}{2}\cdot n

Получим: S_{12}=\frac{1600+\left(12-1\right)\cdot 300}{2}\cdot 12=29400 рублей.

3. Ученица Маша хочет сдать тест не менее чем на 88 баллов. Студент Василий заметил, что каждый месяц результат Маши увеличивается на 7 баллов. За сколько месяцев занятий Маша достигнет результата, если ее результат до начала занятий составлял 43 балла?

После первого месяца занятий результат Маши улучшается на 7 баллов и составляет 43 + 7 = 50 баллов. Еще через месяц 50 + 7 = 57 баллов.

Мы имеем дело с арифметической прогрессией, в которой a_1=43,d=7.

Пусть результат не ниже 88 баллов достигнут через n месяцев. Получим:

a_n=a_1+(n-1)d=43+7\cdot (n-1)\geq 88.

43+7\cdot (n-1)\geq 88

n-1\geq \frac{45}{7}

n\geq \frac{52}{7}

Так как n – целое, n\geq 8. Осталось ответить на вопрос задачи.

Результаты теста Маши составляют арифметическую прогрессию, в которой a_1=43, a_2=50... a_8=a_1+(n-1)d=43+(8-1)\cdot 7=92.

Значит, через 1 месяц занятий результат Маши увеличится до 50, через два – до 57, а через семь – до 92.

Семь месяцев занятий нужно Маше, чтобы достичь результата.

Задачи ОГЭ на тему «Арифметическая прогрессия»

4. (Задача ОГЭ)

В пер­вом ряду ки­но­за­ла 30 мест, а в каж­дом сле­ду­ю­щем на 2 места больше, чем в предыдущем. Сколь­ко мест в ряду с но­ме­ром n?

1) 28 + 2n   2) 30 + 23) 32+2 4) 2n

Количество мест в рядах ки­но­за­ла об­ра­зу­ют ариф­ме­ти­че­скую прогрессию. По фор­му­ле для на­хож­де­ния n-го члена ариф­ме­ти­че­ской про­грес­сии:

a_n=a_1+(n-1)d

В нашей прогрессии a_1=30,\, \, d=2.

Значит, a_n=30+2(n-1)=28+2n.

Правильный ответ: 1.

5. (Задача ОГЭ) Выписаны пер­вые не­сколь­ко чле­нов ариф­ме­ти­че­ской прогрессии: −87 ; −76; −65; … Най­ди­те пер­вый по­ло­жи­тель­ный член этой прогрессии.

Найдем разность прогрессии: d= a_2-a_1=(-76)-(-87)=11.

По фор­му­ле для на­хож­де­ния n-го члена ариф­ме­ти­че­ской про­грес­сии: a_n=a_1+(n-1)d

Мы хотим найти первый положительный член этой прогрессии. Это значит, что мы находим номер n, начиная с которого выполняется неравенство .

Получим:

Отсюда  

Значит, a_9 – первый положительный член прогрессии. Он равен: a_9= a_1+8d=1.

Задачи ОГЭ для самостоятельного решения:

1. Най­ди­те сумму всех от­ри­ца­тель­ных чле­нов ариф­ме­ти­че­ской про­грес­сии –7,2; –6,9; …

2. Вы­пи­са­но не­сколь­ко по­сле­до­ва­тель­ных чле­нов ариф­ме­ти­че­ской про­грес­сии: …; −9; x; −13; −15; … Най­ди­те член про­грес­сии, обо­зна­чен­ный бук­вой .

Ответы к задачам:

1. Ответ: -90

2. Ответ: -11.

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

НОВЫЙ НАБОР 2020 ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.