В задачах с параметрами Профильного ЕГЭ по математике вам встретятся не только графики функций (в школьном смысле этого слова), но и множества точек на плоскости.
Вот несколько уравнений и неравенств, задающих окружность, круг, ромбик, отрезок. Заметим, что окружность или ромбик, хотя и задаются уравнениями, не являются графиками функций в школьном смысле этого слова. Чтобы лучше почувствовать эту разницу, повторите тему «Что такое функция».
Задачи с параметрами на ЕГЭ по математике считаются одними из самых сложных. Однако на самом деле они похожи на конструктор, где вы собираете решение из готовых элементов. Чтобы уверенно решать задачи с параметрами, необходимо отлично знать 5 типов элементарных функций и их графики. Преобразования графиков функций. И вот эти базовые элементы:
1. Уравнение задает окружность с центром в начале координат и радиусом
2. Уравнение задает окружность с центром в точке (a;b) и радиусом
3. Неравенство задает круг вместе с границей.
4. Уравнение задает верхнюю полуокружность с центром в начале координат и радиусом
5. Уравнение задает нижнюю полуокружность с центром в начале координат и радиусом
6. Уравнение задает верхнюю полуокружность центром в точке
и радиусом
7. Уравнение при положительных
и
задает ромбик, симметричный относительно начала координат.
8. Уравнение (сумма модулей) задает график следующего вида:
9. Расстояние между точками и
находится по формуле:
Координаты середины М отрезка АВ находятся по формуле:
Уравнение отрезка концы отрезка
и
В левой части уравнения сумма расстояний от точки P с координатами до точек
и
В правой расстояние между точками
и
Пара чисел соответствует координатам любой точки этого отрезка.
Кратко это можно записать так: Это значит, что точка P лежит на отрезке