Slider

Геометрическая прогрессия в задачах ЕГЭ по математике

Анна Малкова

Геометрическая прогрессия — это последовательность, каждый член которой, начиная со второго, равен произведению предыдущего члена и некоторого фиксированного числа q:

b_{n+1 }= b_{n}q \: \: \, \, (n = 1,2, ...).

Фиксированное число q называется знаменателем геометрической прогрессии.

Формула n-го члена геометрической прогрессии: b_n=b_1q^{n-1}

Формула суммы  S_n=b_1+b_2+...+b_n  первых  членов геометрической прогрессии вычисляется по формуле:

S_n=b_1\frac{q^n-1}{q-1}

Квадрат каждого члена геометрической прогрессии, начиная со второго, равен произведению соседних:

b_n^2= b_{n-1}\cdot b_{n+1}

1. На поверхности озера растут водоросли. За сутки каждая водоросль делится пополам, и вместо одной водоросли появляются две. Ещё через сутки каждая из получившихся водорослей делится пополам и так далее. Через 30 суток озеро полностью покрылось водорослями. Через какое время озеро было заполнено наполовину?

Ответ парадоксальный: через 29 суток.

Эту задачу лучше всего решать «с конца». Вот перед вами заполненное водорослями озеро. Что было сутки назад? Очевидно, водорослей было в два раза меньше, то есть озеро было покрыто ими наполовину.

Каждый день водорослей в озере становилось в два раза больше, то есть их число увеличивалось в геометрической прогрессии.

2. ЕГЭ) Бизнесмен Бубликов получил в 2000 году прибыль в размере 5000 рублей. Каждый следующий год его прибыль увеличивалась на 300% по сравнению с предыдущим годом. Сколько рублей заработал Бубликов за 2003 год?

Невелика была прибыль Бубликова в 2000 году. Зато каждый год прибыль увеличивалась на 300%, то есть в 4 раза по сравнению с предыдущим годом. Геометрическая прогрессия! Ищем ее четвертый член:

5000\cdot 4^3 = 320 000

3. (Задача ЕГЭ) Компания «Альфа» начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 3000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 100% от капитала предыдущего года. А компания «Бета» начала инвестировать средства в другую отрасль в 2003 году, имея капитал в размере 6000 долларов, и, начиная с 2004 года, ежегодно получала прибыль, составляющую 200% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2006 года, если прибыль из оборота не изымалась?

Определим основные понятия задачи.

Капитал компании – совокупность всех средств, имеющихся у компании.

Прибыль – разница между доходом и расходом (затратами).

Если в 2002 году прибыль компании «Альфа» составляет 100% от капитала прошлого года, значит, за год капитал компании «Альфа» удвоился. Аналогично, капитал компании «Альфа» удваивается в 2003, 2004, 2005 и 2006 годах, то есть в 2006 году он составил 3000 \cdot 2^5 = 96 000  тысяч долларов.

Капитал компании «Бета» ежегодно увеличивается в 3 раза. В 2006 году он увеличился в 3^3=27  раз по сравнению с 2003 годом и составил  6000 \cdot 27 = 162000  долларов.

Это на 66 тысяч долларов больше, чем капитал компании «Альфа».

Бесконечно убывающая геометрическая прогрессия

Геометрическая прогрессия, знаменатель которой |q| <1, называется бесконечно убывающей.

1;{{1}\over {2}};{{1}\over {4}};{{1}\over {8}};{{1}\over {16}}\dots  пример бесконечно убывающей геометрической прогрессии.

Чему же равна ее сумма?

Нарисуем прямоугольник с площадью 1. Добавим к нему участки с площадью \frac{1}{2};\, \frac{1}{4};\, \frac{1}{8}...

К чему стремится площадь полученной фигуры при бесконечном увеличении n, то есть при добавлении все более мелких участков? Очевидно, к двум.

Сумма бесконечно убывающей геометрической прогрессии – число, которое находится по формуле:

S=\frac{b_1}{1-q}

Есть такой математический анекдот, и теперь вы его поймете.

Бесконечное число математиков заходит в бар. Первый говорит: «Мне кружку пива!» Второй: «Мне полкружки пива!» Третий: «Мне четверть кружки пива!» Четвертый: «Мне \frac{1}{8} кружки пива!» Бармен: «Погодите-ка… Знаю я ваши фокусы — вам две кружки пива на всех!»

Задачи ЕГЭ для самостоятельного решения

1. Бизнесмен Коровин получил в 2000 году прибыль в размере 1 400 000 рублей. Каждый следующий год его прибыль увеличивалась на 20% по сравнению с предыдущим годом. Сколько рублей составила прибыль Коровина за 2004 год?

2. Компания «Альфа» начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 4000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 100% от капитала предыдущего года. А компания «Бета» начала инвестировать средства в другую отрасль в 2004 году, имея капитал в размере 4500 долларов, и, начиная с 2005 года, ежегодно получала прибыль, составляющую 200% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2007 года, если прибыль из оборота не изымалась?

Ответы:

  1. Ответ: 2 903 040
  2. Ответ: 134500

 

 

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

НОВЫЙ НАБОР 2020 ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.