Анна Малкова
Иррациональными называются уравнения, содержащие знак корня – квадратного, кубического или n-ной степени.
Мы помним из школьной программы: как только в уравнении или неравенстве встретились корни, дроби или логарифмы – пора вспомнить про область допустимых значений (ОДЗ) уравнения или неравенства.
По определению, ОДЗ уравнения (или неравенства) – это пересечение областей определения всех функций, входящих в уравнение или неравенство,
Например, в уравнении присутствует арифметический квадратный корень . Он определен
при .
В 2018-2019 году среди учителей появилось такое мнение, что писать слова «область допустимых значений» уже не модно. И что за это даже могут снизить оценку на экзамене.
Нет, оценку не снизят. И основных понятий школьной математики никто не отменял. Однако есть еще лучший способ оформления решения – в виде цепочки равносильных переходов. Смотрите, как решать и оформлять иррациональные уравнения:
1.Решите уравнение . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
Выражение под корнем должно быть неотрицательно. И сам корень – величина неотрицательная. Значит, и правая часть должна быть больше или равна нуля. Следовательно, уравнение равносильно системе:
Повторим, что решение таких уравнений лучше всего записывать в виде цепочки равносильных переходов. Если вы не очень хорошо понимаете, что такое система уравнений и совокупность уравнений, - повторите эту тему.
или
В ответ запишем меньший из корней: - 9.
Теперь уравнение, в котором есть ловушка.
2.Решите уравнение . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
Что получилось у вас? Правильный ответ: . Если у вас получилось
– это был посторонний корень. Запишите решение в виде цепочки равносильных переходов, как в задаче 1, и вы поймете, что
не может быть корнем этого уравнения.
3.Решите уравнение:
Запишем решение как цепочку равносильных преобразований. Учитесь читать такую запись и применять ее.
Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю, а другие при этом не теряют смысла.
4.Решите уравнение:
Ответ: или
.
А теперь сложное уравнение. Как это часто бывает, нас выручит замена переменной.
Причем новая переменная будет не одна, а целых две.
5.Решите уравнение
Найдем ОДЗ:
.
Мы можем, как в задаче 10, возвести обе части уравнения в квадрат. Но после этого придется еще раз возводить в квадрат, а это долгий способ.
Есть короткий путь!
Сделаем замену: ,
.
Выразим через
и
:
и
. Это выражения можно приравнять друг к другу.
Получим систему
Решим одно из уравнений. Все равно, какое, - ведь нам надо найти .
Ответ: . Заметим, что
является также и корнем уравнения