Покажем, как с помощью графика функции y = ax2 + bx + c решать квадратные неравенства.
Квадратичная функция, или парабола, — это функция вида
Вспомним свойства этой функции:
Координаты вершины параболы:
Если , ветви вверх
Если , ветви вниз
Точки пересечения с осью X: и
где и
— корни квадратного уравнения
Точка пересечения с осью Y: М (0; с).
Вспомним также, как выражение раскладывается на множители.
где и
— корни квадратного уравнения
1. Часто на тестировании мы предлагаем решить неравенство
x2 < 400
Справляются далеко не все. Очень часто, не задумываясь, выдают «ответ»: x < ± 20.
Однако сама эта запись — абсурдна! Представьте, что вы слышите прогноз погоды: «Температура будет меньше плюс-минус двадцати градусов». Что, спрашивается, надеть — рубашку или шубу? :-)
Давайте решим это неравенство с помощью графика. Изобразим схематично график функции y = x2 и отметим все значения x, для которых y < 400.
Теперь мы видим правильный ответ: x ∈ (−20; 20).
Запомним: извлекать корень из неравенства нельзя. Такого действия просто нет.
2. Следующее неравенство:
Переносим всё в левую часть неравенства. Раскладываем левую часть на множители.
Рисуем ось X. Рисуем параболу с ветвями вверх.
Эта парабола пересекает ось X в точках - 4 и 4. Отмечаем знаки выражения в левой части на каждом интервале.
Записываем ответ:
3. Решим неравенство: x2 − 3x − 10 ≥ 0.
Графиком функции y = x2 − 3x − 10 служит парабола, ветви которой направлены вверх. Решая квадратное уравнение x2 − 3x − 10 = 0, находим x1 = −2 и x2 = 5 — в этих точках парабола пересекает ось X. Нарисуем схематично нашу параболу:
Мы видим, что при x ∈ (−2; 5) значения функции отрицательны (график проходит ниже оси X). В точках −2 и 5 функция обращается в нуль, а при x < −2 и x > 5 значения функции положительны. Следовательно, наше неравенство выполняется при .
Обратите внимание, что для решения неравенства нам достаточно было схематично изобразить параболу. Ось Y вообще не понадобилась!
4. Ещё одно неравенство: x2 + 2x + 4 > 0.
Ветви параболы y = x2 + 2x + 4 направлены вверх. Дискриминант отрицателен, т. е. уравнение x2 + 2x + 4 = 0 не имеет корней. Стало быть, нет и точек пересечения параболы с осью X.
Раз ветви параболы направлены вверх и она не пересекает ось X — значит, парабола расположена над осью X.
Получается, что значения функции положительны при всех возможных x. Иными словами, решения нашего неравенства — это все действительные числа.
Ответ: .
Квадратные неравенства являются неотъемлемой частью ЕГЭ. Разберём типичные примеры из банка заданий ЕГЭ.
5. Следующее квадратичное неравенство:
Разложим его левую часть на множители.
Получим:
И больше ничего не пишем. Рисуем ось X. Рисуем параболу с ветвями вверх.
Эта парабола пересекает ось X в точках 1 и 5. Отмечаем знаки выражения в левой части на каждом интервале.
Записываем ответ:
6. Еще неравенство:
Квадратное уравнение не имеет решений — его дискриминант отрицателен. Это значит, что парабола
нигде не пересекает ось X. Ветви этой параболы направлены вверх. Все значения функции
положительны. Неравенство
выполняется для всех действительных X.
Соберем в одну таблицу примеры решения различных квадратичных неравенств.
Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Квадратичные неравенства» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена: 08.05.2023