Анна Малкова
Арифметическая прогрессия — это последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и некоторого фиксированного числа d:
Фиксированное число называется разностью арифметической прогрессии.
Формула n-го члена арифметической прогрессии:
Сумма первых членов арифметической прогрессии
вычисляется по формуле:
Каждый член арифметической прогрессии, начиная со второго, есть среднее арифметическое соседних:
1. Максим решил накопить на айфон последней модели и 1 марта положил в копилку 10 рублей. С этого дня Максим ежедневно опускает в копилку на 10 рублей больше, чем в предыдущий день. Сколько рублей будет в копилке 31 мая, после того как Максим, как обычно, положит туда деньги?
По условию, 1 марта в копилке у Максима 10 рублей.
2 марта Максим опускает в копилку на 10 рублей больше, чем в предыдущий день, то есть 20 рублей.
3 марта он добавляет еще 30 рублей,
4 марта 40 рублей,
5 марта 50 рублей.
Мы имеем дело с арифметической прогрессией.
В нашей прогрессии В марте 31 день, в апреле 30, в мае 31 день. Значит,
31 мая Максим положит в копилку рублей.
Всего в копилке в этот день будет рублей.
Видите, как удобно пользоваться формулами для вычисления n-ного члена и суммы арифметической прогрессии. Намного проще, чем складывать 92 слагаемых.
2. (Задача ЕГЭ) Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние больше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в общей сложности 10 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 150 метрам.
Пусть улитка проползла в первый день метров, в последний –
метров, причем
. Тогда за n дней она преодолела
метров. Отсюда
Ответ: 30
3. (Задача ЕГЭ) Васе надо решить 434 задачи. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Вася решил 5 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 14 дней
Это обычная задача на арифметическую прогрессию. В первый день Вася решил задач, в последний
задач. Запишем формулу для суммы арифметической прогрессии:
. Отсюда
4. (Задача ЕГЭ) Бригада маляров красит забор длиной 150 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 75 метров забора. Определите, сколько дней бригада маляров красила весь забор.
В первый день бригада покрасила метров забора, во второй
метров, в последний
метров.
По формуле суммы арифметической прогрессии: . По условию,
. Отсюда n = 4.
5. (Задача ОГЭ) Дана арифметическая прогрессия: -4; -2; 0… Найдите сумму первых десяти её членов.
Найдем d – разность арифметической прогрессии.
Найдем сумму первых 10 членов прогрессии по формуле:
У нас n = 10.
Задачи ЕГЭ для самостоятельного решения
- Турист идет из одного города в другой, каждый день проходя больше, чем в предыдущий день, на одно и то же расстояние. Известно, что за первый день турист прошел 10 километров. Определите, сколько километров прошел турист за третий день, если весь путь он прошел за 6 дней, а расстояние между городами составляет 120 километров.
- Рабочие прокладывают тоннель длиной 99 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 7 метров туннеля. Определите, сколько метров туннеля проложили рабочие в последний день, если вся работа была выполнена за 9 дней.
- Грузовик перевозит партию щебня массой 210 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 2 тонны щебня. Определите, сколько тонн щебня было перевезено за девятый день, если вся работа была выполнена за 14 дней.
- Вере надо подписать 640 открыток. Ежедневно она подписывает на одно и то же количество открыток больше по сравнению с предыдущим днем. Известно, что за первый день Вера подписала 10 открыток. Определите, сколько открыток было подписано за четвертый день, если вся работа была выполнена за 16 дней.
Ответы к задачам:
- Ответ: 18
- Ответ: 15
- Ответ: 18
- Ответ: 22.
Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Арифметическая прогрессия в задачах ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена: 04.09.2023