Анна Малкова
Вписанные углы А и С четырехугольника АВСD на рисунке опираются на дуги ВСD и BAD, сумма которых равна 360 градусов. Значит, сумма углов А и С равна .
Докажем обратное утверждение.
Пусть сумма углов А и С четырехугольника АВСD равна 180°. Докажем, что точки А, В, С и D лежат на одной окружности.
Вокруг любого треугольника можно описать окружность, причем только одну. Опишем окружность вокруг треугольника АВD. Мы не знаем пока, лежит ли точка С на этой окружности. Значит, С может лежать на этой окружности, или внутри нее, или вне окружности.
Предположим, что точка С лежит внутри окружности, описанной вокруг треугольника АВD. Продолжим отрезок ВС до пересечения с окружностью в точке .
Так как четырехугольник вписан в окружность, сумма его противоположных углов равна 180°. Это мы доказали. Значит,
.
По условию, . Значит
Угол – смежный с углом ВСD,
Тогда в треугольнике
сумма углов
и
равна 180°. Такой треугольник не может существовать, поскольку угол D в нем равен нулю. Значит, точка С не может лежать внутри окружности, описанной вокруг треугольника ABD.
Аналогично доказывается, что С не может лежать и вне этой окружности. Остается случай, когда точки А, В, С и D лежат на одной окружности.
И это значит, что ABCD вписан в окружность.
Задачи ЕГЭ по теме «Вписанный четырехугольник»
1. Угол A четырехугольника ABCD, вписанного в окружность, равен . Найдите угол C этого четырехугольника. Ответ дайте в градусах.
Сумма противоположных углов четырехугольника, вписанного в окружность, равна . Величина угла С равна
2. Два угла вписанного в окружность четырёхугольника равны и
. Найдите больший из оставшихся углов. Ответ дайте в градусах.
Сумма противоположных углов четырехугольника, вписанного в окружность, равна . Больший из оставшихся углов лежит напротив меньшего из указанных в условии, и он равен
.
Спасибо за то, что пользуйтесь нашими статьями. Информация на странице «Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противоположных углов равна 180 градусов» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена: 04.09.2023