Slider

Метод «Оценка плюс пример» в задачах ЕГЭ на числа и их свойства (задание 19)

«Оценка плюс пример» — это специальное математическое рассуждение, которое применяется в некоторых задачах при нахождении наибольших или наименьших значений.

Предположим, что мы ищем наименьшее значение некоторой величины A. Действуем в два этапа.

1) Оценка. Показываем, что выполнено неравенство A \geq \alpha .

2) Пример. Предъявляем пример, когда достигается равенство A = \alpha .

Сейчас покажем, как этот метод применяется в задачах. Начнем с задачи простой и умилительной. Поговорим о кроликах.

(ЕГЭ) В живом уголке четыре ученика кормят кроликов. Каждый кормит нескольких (хотя бы одного) кроликов, но не всех. Первый ученик дает порцию по 100 грамм, второй – по 200 г, третий – по 300 г., а четвертый – по 400 г.

а) Может ли оказаться, что кроликов было 15 и все они получили одинаковое количество корма?

б) Может ли оказаться, что кроликов было 15 и все они получили различное количество корма?

в) Какое наибольшее количество кроликов могло быть в живом уголке, если каждый ученик насыпал корм ровно четырем кроликам и все кролики получили разное количество корма?

а) Да, может. Например, первый и четвертый ученики кормят семь кроликов. Каждый из этих семи кроликов получает по 100 + 400 = 500 г корма. Второй и третий ученики кормят восьмерых оставшихся кроликов, которые также получат по 200 + 300 = 500 г корма.

б) Нет, не может.

Пусть среди кроликов есть «счастливец», которого покормили все школьники. Он получил максимально возможное количество корма, равное 100 + 200 + 300 + 400 = 1000 г.

Среди кроликов также может быть «невезучий», которого никто не покормил. Он получил 0 грамм корма. Значит, количество корма для одного кролика может принимать 11 различных значений: 0, 100, 200, 300… 1000 грамм.

Поскольку кроликов 15, а возможных значений только 11, среди этих пятнадцати найдутся кролики, получившие одинаковое количество корма.

в) Если каждый ученик насыпал корм четверым кроликам, то всего ученики раздали кроликам

4∙(100 + 200 + 300 + 400) = 4000 г. корма.

В пункте (б) мы выяснили, что всего может быть 11 различных значений для количества корма, которое получил кролик. Но если 11 кроликов получают различное количество корма, то общее количество корма равно 0 + 100 + 200 +…+ 1000 = 5500 грамм. Это на 1500 грамм больше, чем 4000 грамм.

Значит, накормить 11 кроликов, соблюдая все условия пункта (в), школьники не смогут.

Вариант с 10 кроликами также невозможен: даже если среди кроликов не будет того, который получил 1000 г, все равно не хватает 500 г корма.

Получается, что число кроликов не больше, чем 9. Мы оценили количество кроликов. Приведем пример, когда кроликов именно 9.

0 100 200 300 400 600 700 800 900
1 ученик 100г + + + +
2 ученик 200 г + + + +
3 ученик 300 г + + + +
4 ученик 400 г + + + +

 

Варианты 1000 г и 500 г отсутствуют. Все условия задачи выполнены – каждый ученик покормил 4 кроликов, и все кролики получили различное количество корма.

Ответ: 9.

В пункте (в) мы применили метод «Оценка плюс пример». Это один из основных методов решения задач на числа и их свойства.

Сначала мы доказали, что число кроликов не больше 9.

После этого привели пример, когда кроликов ровно 9.

Вот более сложная задача. Здесь тоже применяется метод «Оценка плюс пример».

2. На доске написано 30 натуральных чисел (не обязательно различных), каждое из которых больше 4, но не превосходит 44. Среднее арифметическое написанных чисел равно 11. Вместо каждого из чисел на доске написали число, в два раза меньшее первоначального. Числа, которые после этого оказались меньше 3, с доски стёрли.

а) Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше 16?

б) Могло ли среднее арифметическое оставшихся на доске чисел оказаться больше 14, но меньше 15?

в) Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.

Пусть на доске были написаны числа x_{1},x_{2},...x_{30} – всего 30 чисел, причем
5\leq x_{i}\leq 44.

Вместо каждого из чисел x_{1},x_{2},...x_{30} написали число \frac{x_{1}}{2},\frac{x_{2}}{2},...\frac{x_{30}}{2}.

Заметим, что если x_{i}=5, то 

Пусть на доске было k чисел, не равных 5, и 30 - k пятерок.

Поскольку среднее арифметическое 30 чисел равно их сумме, деленной на 30, сумма 30 чисел на доске равна 30 ∙ 11=330.

Пусть S – сумма k чисел, не равных 5. Тогда
S+5\left ( 30-k \right )=330, отсюда S=180+5k.

Пусть m – среднее арифметическое k чисел, которые остались на доске после того, как стерли числа меньшие трёх.

После того, как k чисел были уменьшены в 2 раза, их сумма стала равна \frac{S}{2}, а их среднее арифметическое m=\frac{S}{2k}.

a) Может ли быть

Предположим, что  тогда

;

Пусть k=6, то есть на доске 6 чисел, не равных 5, и 24 пятёрки.

Тогда 24\cdot 5+S=330, S=210.

Подойдут числа:

\underbrace{5,5...5}_{24},\;35,\;35,\;35,\;35,\;35,\;35.

б) Может ли быть  где m=\frac{S}{2k}?

Предположим, что 

Тогда

отсюда ,

Неравенство не имеет целых решений. Значит, предположение было неверно.

в) Найдем наибольшее m, где m=\frac{S}{2k}.

Сумма k чисел, не равных 5, равна S; мы знаем, что S=180+5k.

m=\frac{S}{2k}=\frac{90}{k}+\frac{5}{2};

Очевидно, m максимально при наименьшем возможном k.

Поскольку на доске k чисел, отличных от 5, каждое из этих чисел больше 5 и не превосходит 44 (по условию). Тогда их сумма
6k\leq S\leq 44k.

6k\leq 180+5k\leq 44k,

180+5k\leq 44k,

39k\geq 180

k\geq 4\frac{8}{13}

Поскольку k – целое,
k\geq 5.

Тогда
m=\frac{S}{2k}=\frac{90}{k}+\frac{5}{2}\leq \frac{90}{5}+\frac{5}{2};

m\leq 20,5.

Это оценка. Приведем пример, когда k=5 и m=20,5. На доске 5 чисел, больших пяти, сумма которых равна S=205. Кроме них, на доске находится 25 пятёрок.

По условию, числа, большие пяти, могут быть равны между собой. Возьмем их равными 41 = 205 : 5.

Получим:

\underbrace{5,5...5}_{25},\;41,\;41,\;41,\;41,\;41

В этом случае m = 20,5.

В следующих статьях – читайте о других секретах решения задания 19 Профильного ЕГЭ по математике (Числа и их свойства). Приходите к нам в ЕГЭ-Студию на интенсивы по задаче 19 и на наш Онлайн-курс.

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

НОВЫЙ НАБОР 2020 ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

Вы получите:

— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных