На сторонах и
треугольника
отмечены точки
и
соответственно, причём
Отрезки
и
пересекаются в точке
а) Докажите, что — параллелограмм.
б) Найдите если отрезки
и
перпендикулярны,
Докажем пункт (а) с помощью теоремы Менелая:
Пусть
По теореме Чевы,
тогда
тогда
Это значит, что по двум углам и
то есть
Рассмотрим треугольник
Прямая пересекает две его стороны и продолжение третьей стороны
По теореме Менелая,
тогда
по углу и двум сторонам, отсюда
Мы получили:
— параллелограмм по определению.
Мы доказали то, что требовалось в пункте (а).
Но что делать, если теоремы Менелая и Чевы вы не проходили в школе? Ничего страшного, докажем без теорем Менелая и Чевы. Их легко заменят подобные треугольники.
Обозначим
Докажем, что — параллелограмм.
Пусть — середина
Тогда
Тогда по углу и двум пропорциональным сторонам,
Проведём
По теореме Фалеса
Пусть
по двум углам;
Пусть
по 2 углам,
тогда
Это значит, что по углу и двум сторонам и
При этом
Получим, что в четырёхугольнике :
Значит, — параллелограмм.
Как видим, эти решения примерно одного уровня сложности.
А вот в пункте (б) нет необходимости применять теоремы Чевы и Менелая. Он легко решается с помощью обычной школьной геометрии.
б) Найдём , если
Поскольку получим, что
— прямоугольный.
Мы доказали в пункте (а), что — трапеция, причём
По условию,
Тогда
Пусть
Тогда — параллелограмм (по признаку паралелограмма)
по теореме Пифагора из
Найдём из
по теореме косинусов.
Ответ: 17.
Благодарим за то, что пользуйтесь нашими статьями. Информация на странице «ЕГЭ-2020. Санкт-Петербург, задача 16» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена: 06.09.2023