Условие задачи
(Авторская задача) Дано уравнение: \(\displaystyle \frac{11-6cos 2x-16sin x}{\sqrt{\log_{5}tg x}}=0.\)
а) Решите уравнение.
б) Найдите все его корни на отрезке \([-4π ; 0]\).
Ответ:
a) \(x=\arcsin \displaystyle\frac{5}{6}+2\pi n.\)
б) \(x_{1}=\arcsin \displaystyle\frac{5}{6}-4\pi ; \;x_{2}=\arcsin \frac{5}{6}-2\pi. \)