Slider

Решение. Задание 19, Вариант 5

Условие задачи

На доске написано число N = 2345623456.

а) Можно ли, приписав к числу N справа две цифры, получить в результате число, кратное 72?

б) Можно ли, приписав к числу N справа три цифры, получить в результате число, кратное 792?

в) Сколькими способами можно вычеркнуть из числа N две цифры так, чтобы полученное число делилось на 12?

Решение

а) Число делится на 72 в том и в только том случае, когда оно делится на 9 и на 8 одновременно. Число делится на 9 тогда и только тогда, когда на 9 делится сумма его цифр, а на 8 тогда и только тогда, когда на 8 делится число, составленное из трех его последних цифр.
Сумма цифр числа N равна 40.
Припишем к N цифры 3 и 2. Тогда сумма цифр полученного числа равна 45, а число, составленное из трех его последних цифр, – это 632. Таким образом, условия делимости на 72 выполнены.

б) Число делится на 729 тогда и только тогда, когда оно делится на 8, на 9 и на 11.
Вспомним признак делимости на 11: суммы цифр на четных и нечетных позициях числа равны или их разность кратна 11.

Легко проверить, что в числе N суммы цифр на четных и на нечетных позициях равны:
2 + 4 + 6 + 3 + 5 = 3 + 5 + 2 + 4 + 6
Значит, само число N делится на 11. Припишем к нему три цифры a, b и с.
Необходимо выполнение условий:
число, составленное из цифр а, b и с, должно делиться на 8,
сумма а + b + c равна 5, 14 или 23 – словом, при делении на 9 должна давать остаток 5,
b = а + с (или же разность а + с – b делится на 11).

Подходит число 176.

в) Чтобы число делилось на 12, необходимо и достаточно, чтобы его сумма цифр была кратна 3, а число, составленное из двух последних цифр, было кратно 4.
Заметим, что вычеркивать последнюю цифру, 6, нельзя: чтобы число осталось четным, нужно будет вычеркнуть и предпоследнюю 5, после чего оставшееся число не будет делиться на 3.

Вычеркивать предпоследнюю цифру, 5, тоже нельзя: чтобы число было кратно 4, нужно будет вычеркивать и третью с конца 4, но тогда результат не будет делиться на 3.

Таким образом, последними цифрами остаются 5 и 6. При этом условие делимости на 4 выполняется.
Осталось условие делимости на 3. Поскольку сумма цифр числа N равна 40, сумма двух вычеркнутых цифр должна быть равна 4, 7 или 10 – то есть при делении на 3 давать остаток 1. Значения меньшие 4 или большие 10 в условиях задачи невозможны.

Получить 4 можно, вычеркнув две двойки (единственным способом).
Получить 7 – вычеркнув комбинацию «2; 5» или «3; 4». Комбинацию «2; 5» можно вычеркнуть двумя способами – поскольку предпоследнюю пятерку мы не трогаем и вместе с остающейся пятеркой можем взять одну из двух двоек.
Для комбинации «3; 4» возможны 4 способа.
Наконец, пару «4; 6» можно вычеркнуть двумя способами – поскольку мы не трогаем последнюю шестерку.
Всего получается 9 способов.

* Авторская задача Антона Акимова

Ответ:

а) нет;

б)176;

б) 9.

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.