previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 2. Задание 17. Решение

Условие задачи

Анна Малкова

1 сентября 2019 года в заповеднике обитало 256 криворогих оленей. Известно, что в течение года численность популяции криворогих оленей увеличивается в среднем на 25% (за счет естественного прироста). Кроме того, биологи собираются увеличить количество оленей в заповеднике не менее чем до 1000 и для этого 1 сентября 2020, 2021, 2022 и 2023 года будут завозить в заповедник одинаковое количество новых оленей. Какое наименьшее количество оленей им придется завозить в заповедник ежегодно?

Решение

Пусть S = 256 — начальное количество оленей,

\displaystyle k = 1,25 = \frac{5}{4};

X оленей завозят ежегодно.

(((Sk+x)\cdot k+x)\cdot k+x)\cdot k+x \geq 1000

Sk^4 + X(k^3 + k^2 +k +1) \geq 1000

\displaystyle 256 \cdot \left (\frac{5}{4}  \right )^4 = \frac{256}{16^2} \cdot 25^2 =625;

625 + x (k^2 +1)(k+1) \geq 1000

\displaystyle x(\frac{5}{4}+1)(\frac{25}{16}+1) \geq 375

\displaystyle \frac{41}{16}x \geq \frac{125 \cdot 4}{3}

\displaystyle x \geq \frac{125 \cdot 64}{123};

\displaystyle x \geq \frac{125}{123}\cdot 64.

Покажем простой способ решения этого неравенства, без сложных вычислений. Учитываем, что х - целое число.

Очевидно, x \, \textgreater \, 64.

Проверим x=65.

\displaystyle \frac{65}{64} \vee \frac{125}{123}

\displaystyle 1 + \frac{1}{64} \vee 1+ \frac{2}{123}

\displaystyle \frac{1}{64} \vee \frac{2}{123}

\displaystyle \frac{2}{128} \, \textless \, \frac{2}{123}
Значт, x=65 - не подходит.

Если x=66,

\displaystyle \frac{66}{64} \vee \frac{125}{123}

\displaystyle \frac{2}{64} \vee \frac{2}{123}

\displaystyle \frac{66}{64} \, \textgreater \, \frac{125}{23}

x=66 подходит

Ответ

66 оленей