previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 3 Задание 11. Решение

Условие задачи

Имеется три металлических слитка. Первый весит 5 кг, второй — 3 кг, и каждый из этих двух слитков содержит 30 меди. Если первый слиток сплавить с третьим, то получится слиток, содержащий 56 меди, а если второй с третьим — получится слиток, содержащий 60 меди. Найдите массу (в кг) третьего слитка.

Решение

Найдем, сколько килограммов меди содержится в первом и втором слитках.

В первом слитке: 30 от 5 кг, то есть 0,3\cdot 5\ кг меди.

Во втором слитке: 30 от 3 кг, то есть 0,3\cdot 3\ кг меди.

Пусть x кг — масса третьего слитка, p% — процентное содержание меди в третьем слитке. Тогда третий слиток содержит 0,01p\cdot x кг меди.

Запишем, сколько килограммов меди получится, если сплавить первый и третий слитки (первое уравнение), а затем второй и третий слитки (второе уравнение)

\left\{ \begin{array}{c}0,3\cdot 5+0,01p\cdot x=0,56\cdot \left(x+5\right) \\ 0,3\cdot 3+0,01p\cdot x=0,6\cdot \left(x+3\right) \end{array}\right.

\left\{ \begin{array}{c}1,5+0,01p\cdot x=0,56x+2,8 \\ 0,9+0,01p\cdot x=0,6x+1,8 \end{array}\right.

Из первого уравнения вычтем второе, получим
0,6=1-0,04x
x=10

Ответ

10