previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 3 Задание 4. Решение

Условие задачи

Теплоход приходит к пристани между 12.00 и 13.00. Автобус отходит от пристани между 12.25 и 12.40. Пассажиру требуется 10 минут, чтобы перейти от теплохода к остановке автобуса. Найти вероятность того, что он успеет на автобус.

Решение

Пассажир может оказаться на остановке автобуса между 12.10 и 13.10.

Если пассажир пришел на остановку автобуса не позднее 12.25, то он успел на автобус с вероятностью 1.

Вероятность прийти на остановку с 12.10 до 12.25 равна \displaystyle \frac{1}{4} (15 минут из 60 минут).

Если пассажир пришел на остановку позже 12.40, то вероятность успеть на автобус для него равна нулю.

Найдем, с какой вероятностью пассажир успеет на автобус, если придет на остановку между 12.25 и 12.40.

Чтобы успеть, пассажир должен прийти на остановку раньше автобуса.

 

Отметим на горизонтальной оси x время прибытия пассажира на остановку.

На вертикальной оси y - время отхода автобуса.

Чтобы пассажир успел, необходимо условие: x\leq y (время, когда пассажир появился на остановке, не больше, чем время отъезда автобуса).

Это область над прямой y = x на нашем рисунке.

Общему множеству исходов соответствует площадь квадрата на рисунке.

Множеству благоприятных исходов - площадь над прямой y = x, то есть половина площади квадрата.

Если пассажир пришел на остановку между 12.25 и 12.40, вероятность успеть на автобус равна 0,5.

А вероятность того, что пассажир придет между 12.25 и 12.40, равна \displaystyle 15 : 60 = \frac{1}{4}.

Значит, вероятность успеть на автобус равна \displaystyle  \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{3}{8} = 0,375

Ответ

0,375

*В видеоразборе показан другой способ решения этой задачи.