previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 5. Задание 14. Ответ

Условие задачи

Дмитрий Мухин В правильной треугольной пирамиде ABCD (D - вершина) проведена плоскость \alpha, проходящая через вершину С и параллельная ребру AB. Оказалось, что \alpha делит пирамиду на два многогранника равного объема.
а) докажите, что \alpha делит ребро DA в отношении \sqrt{2}+1 к 1, считая от вершины D.
б) найдите объем пирамиды ABCD, если известно, что плоскости α и ABD перпендикулярны, и AB=2.

Ответ

\displaystyle \frac{(4+\sqrt2)\sqrt{2+\sqrt2}}{6}.