previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 5. Задание 14. Решение

 

Условие задачи

Дмитрий Мухин В правильной треугольной пирамиде ABCD (D - вершина) проведена плоскость \alpha, проходящая через вершину С и параллельная ребру AB. Оказалось, что \alpha делит пирамиду на два многогранника равного объема.
а) докажите, что \alpha делит ребро DA в отношении \sqrt{2}+1 к 1, считая от вершины D.
б) найдите объем пирамиды ABCD, если известно, что плоскости α и ABD перпендикулярны, и AB=2.

 

Решение

а) \alpha \parallel AB \Rightarrow \alpha \parallel (DAB) по признаку параллельности прямой и плоскости, \alpha \cap (DAB) = MN

MN \parallel AB по теореме о прямой и параллельной ей плоскости.

По условию, \displaystyle V_{MNDC} = \frac{1}{2} V_{ABCD}; тогда

\displaystyle S_{\triangle MND} = \frac{1}{2}S_{\triangle ABD}

(так как пирамиды MNDC и ABCD имеют общую высоту)

\displaystyle \triangle DMN \sim \triangle DAB, \, \, \, k = \frac{1}{\sqrt2}; \, \, \, \, \frac{DM}{AD} = \frac{\sqrt2}{2} = \frac{1}{\sqrt2},

\displaystyle DM = \frac{1}{\sqrt2}AD, тогда \displaystyle AM = (1- \frac{1}{\sqrt2})AD= \frac{\sqrt2 -1}{\sqrt2}(AD)

\displaystyle \frac{DM}{AM} = \frac{1}{\sqrt2 -1} = \frac{\sqrt2 +1}{1}. чтд

б) \alpha \perp (ABD); \, \, AB = 2; \, \, (ABD) \cap \alpha = MN;

\angle CKD = 90^\circ.

DK \perp (CMN); \, \, KD = x, \, \, KH = (\sqrt2 -1)x,

AD = \sqrt{2x^2+1}; \, \, CK^2=CD^2-DK^2=CH^2-HK^2;

CK - высота \triangle CDH; \, \, \, 2x^2+1-x^2=3-(\sqrt2 -1)^2 x^2,

\displaystyle x^2(4-2\sqrt2)=2; \, \, x = \sqrt{\frac{2+\sqrt2}{2}}; \, \, V_{ABCD} = \frac{1}{3}CK \cdot S_{\triangle ABD} = \frac{(4+\sqrt2)\sqrt{2+\sqrt2}}{6}.

 

Ответ

\displaystyle \frac{(4+\sqrt2)\sqrt{2+\sqrt2}}{6}.