Условие задачи
Найдите все положительные значения параметра а, при которых все различные неотрицательные х, являющиеся решениями уравнения
и расположенные в порядке возрастания, образуют арифметическую прогрессию.
Решение
Преобразуем левую часть уравнения
по формуле разности косинусов
Мы получили две серии решений вида
Корни уравнения, расположенные в порядке возрастания, образуют арифметическую прогрессию в следующих случаях:
1) Корни совпадают,
Другие случаи:
2) где
Это значит, что среди корней уравнения вида x=bn находятся корни уравнения вида
3) Аналогично, где
Рассмотрим эти случаи по отдельности.
2 случай.
По условию, Решая неравенство
получим:
Если (это 1 случай, уже рассмотрен)
Если
Если
Рассмотрим также третий случай
значит,
Так как или
Если
Если
Ответ
Спасибо за то, что пользуйтесь нашими публикациями. Информация на странице «Тренинги по решению вариантов ЕГЭ — 2020. Вариант 5. Задание 18. Решение» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена: 06.03.2023