previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 6. Задание 11. Решение

 

Условие задачи

Расстояние между городами A и B равно 403 км. Из города A в город B выехал автомобиль, а через 1 час следом за ним со скоростью 90 км/ч выехал мотоцикл, догнал автомобиль в городе C и повернул обратно. Когда мотоцикл вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.

 

Решение

Пусть расстояние от A до C равно X. Рассмотрим момент встречи автомобиля и мотоцикла в городе C. Пусть y — скорость автомобиля. Составим таблицу

v t S
автомобиль y \displaystyle \frac{x}{y} x
мотоцикл 90 \displaystyle \frac{x}{90} x

Получим:

\displaystyle \frac{x}{y} - \frac{x}{90} = 1, так как мотоцикл выехал на 1 час позже.

Запишем также, что когда мотоцикл вернулся в A, автомобиль прибыл в B. Автомобиль проехал от города C до города B расстояние 403 — x, а мотоцикл проехал расстояние x до города A.

v t s
автомобиль y \displaystyle \frac{403-x}{y} 403-x
мотоцикл 10 \displaystyle \frac{x}{90} x

Получим систему уравнений

\displaystyle \left\{\begin{gathered} x(\frac{1}{y}-\frac{1}{90})=1\\ \frac{x}{90} = \frac{403-x}{y} \end{gathered}\right.

\left\{\begin{gathered} x(\frac{1}{y}-\frac{1}{90})=1\\ y = \frac{90(403-x)}{x} \end{gathered}\right.

Подставим y в первое уравнение

\displaystyle \frac {x}{403-x} -1 = \frac{90}{x}

x^2 - 90(403-x)=x(403-x)

2x^2 - 313 x -90 \cdot 403 =9

D = 313^2 + 4\cdot 90 \cdot 403 = 388129

\sqrt {D} = 623 (смотрите видео — как без калькулятора вычислить корень из шестизначного числа)

\displaystyle x = \frac{313 \pm 623}{4}; \, \, x \, \textgreater \, 0

\displaystyle x = \frac{936}{4} = 234

 

Ответ

234