previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 8. Задание 17. Решение

Условие задачи

В июле планируется взять кредит в банке на сумму 6 млн рублей на срок 15 лет. Условия его возврата таковы:
— каждый январь долг возрастает на x% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.
Найдите x, если известно, что наибольший платёж по кредиту составит не более 1,9 млн рублей, а наименьший — не менее 0,5 млн рублей.

Решение

Пусть S - сумма долга, S = 6 млн руб

\displaystyle k = 1 \frac{X}{100},

m = x месяцев.

Схема погашения кредита:

Выплаты:

Первая:                   \displaystyle z_1 = Sk - \frac{14}{15}S

Вторая                 \displaystyle z_2 = \frac{14}{15}Sk - \frac{13}{15}S

...

15-я                 \displaystyle z_{15} = \frac{1}{15}Sk

Покажем, что каждая следующая выплата меньше предыдущей.

Сравним n-ую выплату и n-1-ю выплату.

n-ная выплата: \displaystyle z_n \frac{S}{15}(n \cdot k - (n-1))

n-1 - я выплата: \displaystyle z_{n-1} = \frac{S}{15}((n-1)\cdot k - (n-2))

nk - (n-1) \vee (n-1)k - (n-2)

nk - n+1 \vee nk - k - n+2

k \vee 1

Так как \displaystyle k = 1 + \frac{x}{100} \, \textgreater \, 1,

n-я выплата больше, чем (n-1)-я.

Самая большая выплата - первая, наименьшая - последняя.

\left\{\begin{gathered} Sk - \frac{14}{15}S \leq 1,9\\\frac{Sk}{15} \geq 0,5 \end{gathered}\right.

\left\{\begin{gathered} \frac{6}{15}(15k-14)\leq 1,9\\ \frac{6}{15}k \geq 0,5 \end{gathered}\right.

\left\{\begin{gathered} k \leq 1,25\\ k \geq 1,25 \end{gathered}\right.

Отсюда k = 1,25

x = 25%.

Ответ

25