previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 8. Задание 3. Решение

Условие задачи

Елена Любецкая Пусть A (0; 2), B (1; 4), D (2; 0). Найдите \sqrt{10} \cdot cos BAD

Решение

В треугольнике BAD

AD = \sqrt{OA^2 +OD^2} = 2\sqrt{2},

AB = \sqrt{1^2 +2^2 } = \sqrt{5},

BD = \sqrt{1^2 +4^2} = \sqrt{17}

По теореме косинусов для \triangle BAD:

BD^2 = AB^2 + AD^2 - 2 \cdot AB \cdot AD \cdot \cos \angle BAD ;

17 = 5+8-2 \cdot \sqrt{8} \cdot \sqrt{5} \cos \angle BAD;

\displaystyle \cos \angle BAD = -\frac{17-13}{2 \sqrt{8} \cdot \sqrt{5}} = - \frac{4}{4 \sqrt{10}} = - \frac{1}{\sqrt{10}};

\displaystyle \sqrt{10} \cdot \cos \angle BAD = - \frac{\sqrt{10}}{\sqrt{10}} = -1

Ответ

-1