previous arrow
next arrow
Slider

Тренинги по решению вариантов ЕГЭ — 2020. Вариант 9. Задание 19. Ответ

Условие задачи

(МИОО, 2016) Бесконечная арифметическая прогрессия a_1,a_2\dots,a_n\dots состоит из различных натуральных чисел. Пусть S_1=a_1, S_n=a_1+a_2+\dots+a_n при всех натуральных n \geq 2.

а) Существует ли такая прогрессия, для которой S_{10}=100S_1?

б) Существует ли такая прогрессия, для которой S_{10}=50S_2?

в) Какое наименьшее значение может принимать дробь \displaystyle \frac{S_5^2}{S_1S_{10}}

Ответ

а) да; б) нет; в) \displaystyle \frac{200}{81}.