previous arrow
next arrow
Slider

Теория вероятностей

Основы теории вероятностей

В этой статье мы расскажем кратко о том, что такое вероятность события. Дадим определение вероятности, введем понятия зависимых и независимых, совместных и несовместных событий. Объясним, что такое сумма событий и произведение событий.

Больше задач – в статье «Задание 4 Профильного ЕГЭ по математике. Теория вероятностей».

Случайным называется событие, которое невозможно точно предсказать заранее. Оно может либо произойти, либо нет. Теория вероятностей изучает случайные события и их закономерности, а также случайные величины и действия над ними.

Благоприятным мы называем исход, способствующий наступлению данного события.

Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.

Очевидно, что вероятность – величина положительная и не может быть больше единицы.

Например, перед экзаменом вы выучили 3 билета из 20. Вероятность вытянуть счастливый билет равна \frac{3}{20}.

Вот две простых задачи из вариантов ЕГЭ, где применяется определение вероятности:

1. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир Иванов высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру Иванову достанется удобное место, если всего в самолёте 300 мест.

В самолете 21+18=30 мест, удобных для Иванова. Всего в самолете 400 мест. Поэтому вероятность того, что пассажир Иванов получит удобное место, равна 30 : 300 = 0,1.

Просто применили определение вероятности.

2. В группе туристов 32 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист К. полетит пятым рейсом вертолёта.

Каждый рейс, в том числе и пятый, перевозит 4 человек из 32. Вероятность полететь пятым рейсом:

p=\frac{4}{32}=\frac{1}{8}=0,125

Ответ: 0,125.

События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.

Например, вы бросаете монету. «Выпал орел» и «выпала решка» - несовместные события.

Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.

Вы бросаете игральную кость. Вероятность выпадения «тройки» равна \frac{1}{6}. Вероятность выпадения «шестерки» также равна \frac{1}{6}.
Вероятность выпадения числа, которое делится на 3, \frac{1}{6}+\frac{1}{6}=\frac{1}{3}.

Произведение двух событий – термин, означающий, что произошло и одно, и другое событие.

События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.

Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.

3. Говорят, что в старину каждый десятый на Руси был Иван, а каждый двадцатый Петр. Если это верно, то кого было больше: Иванов Петровичей или Петров Ивановичей?

Можно по-разному решать эту задачу, и вероятностный подход здесь тоже применим. Посчитаем вероятности двух событий
Событие А. Случайно выбранного мужчину зовут Иван Петрович
Событие В. Мужчину зовут Петр Иванович.

Вероятность быть Иваном Петровичем для жившего в старину россиянина равна 0,1\cdot0,05=0,005. Мы перемножили вероятности того, что наш древнерусский житель – Иван и что его отца зовут Петр.
А вероятность оказаться Петром Ивановичем точно такая же: 0,05\cdot0,1=0,005.

4. (ЕГЭ) Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с ве-роятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,32. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Шахматист А. играет две партии, одну – белыми фигурами, другую – черными. События «выиграть белыми» и «выиграть черными фигурами» независимы. Вероятность того, что шахматист А. выиграет оба раза, равна произведению вероятностей выигрышей в каждой партии: 0,5 · 0,32 = 0,16.

5. (ЕГЭ) В классе 26 человек, среди них два друга — Андрей и Сергей. Класс случайным образом разбивают на 2 группы по 13 человек. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

Пусть Андрей первым занял место в группе (неважно, в какой). И, кроме него, осталось еще 25 человек, среди которых его друг Сергей. Сколько у Сергея шансов оказаться в той же группе, что и Андрей? В группе должно быть 13 человек, то есть Андрей и еще 12. Значит, вероятность того, что Сергей окажется в той же группе, что и Андрей, равна \frac{12}{25}, то есть 0,48.

Следующую задачу можно решить методами комбинаторики – например, с помощью формулы Бернулли. Однако в обычной школе не изучают комбинаторику, и тем не менее эта задача появилась в сборниках для подготовки к ЕГЭ.

6. Монету бросают 10 раз. Во сколько раз событие «Орел выпадет ровно 8 раз» более вероятно, чем событие «Орел выпадет ровно 9 раз»?

Начнем с числа возможных исходов. Если мы бросаем монету, возможных исходов два – орел или решка.
Бросим монету два раза (или две монеты одновременно, все равно). И вот уже 4 возможных исхода:
ОО
ОР
РО
РР
(буквой О обозначен выпавший «орел», буквой «р» - решка.
Каждый следующий бросок монеты увеличивает число возможных исходов в 2 раза (орел или решка).
Для 10 бросков монеты количество возможных исходов, очевидно, равно 2^{10}.

По определению, вероятность равна отношению числа благоприятных исходов к общему числу исходов.

Рассмотрим случай, когда орел выпадет ровно 9 раз из 10 бросков монеты. Это значит, что решка выпала ровно 1 раз.

Это могло произойти при первом броске, при втором, при третьем… и, наконец, при десятом, всего 10 благоприятных исходов. Вероятность выпадения решки ровно 1 раз из 10 бросков P_1=\frac{10}{2^{10}}.

Теперь случай, когда орел выпал ровно 8 раз из 10 бросков монеты. Значит, решка выпала ровно 2 раза.

Пронумеруем броски: 1,2,3…10.

Решка могла выпасть в первый и во второй раз. Обозначим эту комбинацию 12.

Могла также выпасть в первый и третий раз, в первый и четвертый… Эти комбинации обозначаем как 13, 14…

Пронумеруем таким образом все благоприятные исходы.

12, 13, 14, 15, 16, 17, 18, 19, 1 10

23, 24, 25, 26, 27, 28, 29, 2 10

34, 35, 36, 37, 38, 39, 3 10

45, 46, 47, 48, 49, 4 10

56, 57, 58, 59, 5 10

67, 68, 69, 6 10

78, 79, 7 10

89, 8 10

9 10
Количество благоприятных исходов равно 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45.

P_2=\frac{45}{2^{10}}.

Поделив P_2 на P_1, получим, во сколько раз выпадение решки ровно 8 раз более вероятно, чем выпадение решки ровно 9 раз:

\frac{P_2}{P_1}=\frac{45}{2^{10}}:\frac{10}{2^{10}}=4,5

Ответ: 4,5.

Разберем какую-нибудь типовую задачу ЕГЭ по теме «Теория вероятностей». Такую, в которой мы рисуем «дерево» возможных исходов.

7. (ЕГЭ) Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Изобразим все возможные исходы.

По условию, купленное в магазине стекло для автомобильной фары оказалось бракованным. Как это могло получиться?

Стекло сделано либо на первой фабрике, либо на второй. Эти события несовместны.

Вероятность того, что стекло с первой фабрики, равна 0,45.

Вероятность того, что стекло сделано на второй фабрике, равна 0,55.

Первая фабрика выпускает 3% бракованных стекол. Значит, с вероятностью 0,03 стекло, произведенное на первой фабрике, бракованное.

Вторая фабрика выпускает 1% бракованных стекол. Значит, с вероятностью 0,01 сделанное на ней стекло бракованное.

Покупатель купил бракованное стекло. Оно могло быть сделано на первой фабрике и оказалось бракованным. Это означает одновременное наступление, или произведение, двух независимых случайных событий – «стекло сделано на первой фабрике» и «стекло бракованное». Вероятность произведения этих двух событий равна 0,45 \cdot 0,03.

Или другой случай. Стекло могло быть со второй фабрики и также бракованное. Вероятность одновременного наступления этих двух событий равна 0,55\cdot 0,01. События «стекло с первой фабрики» и «стекло со второй фабрики» несовместны – они не могут случиться одновременно.
Вероятность суммы несовместных событий равна сумме вероятностей.

Значит, вероятность купить бракованное стекло равна:

0,45 \cdot 0,03 + 0,55 \cdot 0,01 = 0,019.

Ответ: 0,019.

Следующая задача будет интересна и старшеклассникам, и студентам. В самом деле – как быть, если вы пришли на экзамен, выучив всего 20 билетов из 30? Идти отвечать первым? Или вторым? Или предпоследним? В каком случае вероятность вытянуть билет, который ты выучил, будет наибольшей?

8. Экзамен проходит по следующей схеме: если некоторый билет уже был вытянут, то после ответа экзаменатор откладывает его в сторону. Студент выучил 20 билетов из 30. Когда ему выгоднее идти, первым или вторым, чтобы вероятность вынуть выученный билет была больше?

Назовем билеты, которые студент выучил, «счастливыми».
Если студент пошел отвечать первым, вероятность вытянуть «счастливый» билет равна \frac{20}{30}=\frac{2}{3}.

Если идти отвечать вторым, возможны два случая:

1) Первый билет, который вытянул кто-то другой, был «счастливым», и тогда «счастливых» билетов теперь 19.

2) Первый билет не был «счастливым», и «счастливых» билетов так и осталось 20.

Нарисуем схему возможных исходов, как всегда делаем в подобных задачах:

Вот наш студент идет отвечать вторым. Вероятность вытянуть «счастливый» билет равна \frac{2}{3}\cdot \frac{19}{29}+\frac{1}{3}\cdot\frac{20}{29}=\frac{2}{3}. Удивительный ответ! Та же самая вероятность! Значит, неважно, первым или вторым идти отвечать, если ты выучил 20 билетов из 30.

Конечно, это были самые простые задачи по теории вероятностей. Такие, которые встречаются на ЕГЭ по математике.

Продолжение:
Задание 4 Профильного ЕГЭ по математике. Теория вероятностей
Теория вероятностей. Парадокс Монти Холла