Больше половины всех задач по геометрии из первой части вариантов ЕГЭ — это задачи, в которых надо посчитать площадь фигуры. Чтобы решить их, надо знать формулы по геометрии — такие, как площадь треугольника или площадь параллелограмма — а также простые приёмы, о которых мы расскажем.
Для начала стоит выучить формулы площадей фигур. Мы специально собрали их в удобную таблицу. Распечатайте, выучите и применяйте!
Конечно же, не все формулы по геометрии есть в нашей таблице. Например, для решения задачи С4 применяются и другие формулы площади треугольника. О них мы обязательно расскажем.
А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ.
-
Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.
Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным
. Высоты этих треугольников равны
и
. Тогда площадь четырёхугольника равна сумме площадей двух треугольников:
.
Ответ:
.
-
В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.
Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной
и трёх прямоугольных треугольников. Видите их на рисунке? Получаем:
.
Ответ:
.
-
Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.
Найдите площадь сектора круга радиуса
, длина дуги которого равна
.
На этом рисунке мы видим часть круга. Площадь всего круга равна
, так как
. Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна
; (так как
), а длина дуги данного сектора равна
, следовательно, длина дуги в
раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в
; раз меньше, чем полный круг (то есть
градусов). Значит, и площадь сектора будет в
; раз меньше, чем площадь всего круга.
Ответ:
.
И ещё примерно половина прототипов задачи В3 — это простые задачи на тему «Координаты и векторы». Для их решения вспомните, что такое абсцисса точки (это ее координата по ) и что такое ордината (координата по
). Пригодятся также такие понятия, как координаты вектора и длина вектора (она находится по теореме Пифагора), синус и косинус угла, угловой коэффициент прямой, уравнение прямой, а также сумма, разность и скалярное произведение векторов, угол между векторами. Все прототипы задачи В3 можно найти на сайте mathege.ru.
Пусть наши формулы по геометрии помогут вам на ЕГЭ! А если вы хотите знать геометрию на более высоком уровне — приглашаем на наши курсы индивидуальной подготовки к ЕГЭ. Занятия ведут репетиторы высокого класса. Присоединяйтесь!
Звоните нам: (495) 984 09 27 ЕГЭ-Студия.
Или нажмите на кнопку «Запишитесь в группу», чтобы заполнить контактную форму. Мы обязательно вам перезвоним.
Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Все формулы по геометрии. Площади фигур» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена: 11.03.2023