previous arrow
next arrow
Slider

Задание 14 Профильного ЕГЭ по математике. Стереометрия. Задача 10

В основании призмы ABCA_1B_1C_1 лежит правильный треугольник, вершина C_1 проецируется в центр Q основания АВС.

а) Докажите, что плоскости ABC_1 и QCC_1 перпендикулярны.

б) Найдите угол между прямой AA_1 и плоскостью ABC_1, если боковое ребро призмы равно стороне основания.

Заметим, что ABCC_1 — правильная пирамида. Ее вершина C_1 проецируется в центр основания — точку Q.

а) \vartriangle ABC — правильный.

Пусть М — середина АВ. СМ — медиана и высота правильного треугольника АВС, CM\bot AB.

C_1Q — высота пирамиды,C_1Q\bot AB. Значит, (CC_1Q)\bot AB по признаку перпендикулярности прямой и плоскости.

Плоскость ABC_1 содержит прямую АВ, AB\bot (CC_1Q). Значит, (ABC_1)\bot (CC_1Q) по признаку перпендикулярности плоскостей.

б) Угол между прямой AA_1 и плоскостью ABC_1 равен углу между CC_1 и (ABC_{1)} т.к. AA_1 \parallel CC_1.

Сделаем новый чертеж:

Угол между прямой и плоскостью равен углу между прямой и её проекцией на плоскость.

Проведём в плоскости CC_1Q прямую CH, CH\bot C_1M.

Также CH\bot AB, т.к. CH\in \left(CC_1Q\right), \, \left(CC_1Q\right)\bot AB.

Значит, CH\bot \left(ABC_1\right). Точка H — проекция точки C на плоскость \left(ABC_1\right), \, \angle CC_1H= \varphi — искомый угол.

Пусть AB=a — сторона основания призмы.

По условию, CC_1=a, \, CM=a\frac{\sqrt{3}}{2} — как высота в правильном треугольнике ABC; CQ=\frac{a\sqrt{3}}{3}. Так как ABCC_1 - правильная пирамида, AC_1=BC_1=CC_1=a и тогда CM=C_1M.

\angle CC_1M=\angle C_1CM= \varphi , т.к. \vartriangle CC_1M — равнобедренный.

Из \vartriangle CC_1Q:

{cos \varphi \ }=\frac{CQ}{CC_1}=\frac{a\sqrt{3}}{3\cdot a}=\frac{\sqrt{3}}{3}.

Ответ:

б) \frac{\sqrt{3}}{3}.

Задание 14 Профильного ЕГЭ по математике. Стереометрия

Благодарим за то, что пользуйтесь нашими статьями. Информация на странице «Задание 14 Профильного ЕГЭ по математике. Стереометрия. Задача 10» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена: 07.09.2023