(495) 984-09-27 | (800) 775-06-82

Трапеция и ее свойства

Трапеция — четырехугольник, у которого две стороны параллельны, а две другие — нет.

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны.

Если боковые стороны равны, трапеция называется равнобедренной.

Трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту:

Отрезок, соединяющий середины боковых сторон трапеции, называется средней линией трапеции. Средняя линия трапеции параллельна основаниям, а длина ее равна полусумме оснований:

Как видим, теория очень проста. А задачи, в которых применяются свойства трапеции, весьма разнообразны. В этой статье разобраны и стандартные задачи (номер  и ), и более интересные.

. Найдите высоту трапеции , опущенную из вершины , если стороны квадратных клеток равны .

 

Рисунок к задаче 1

 

Высота трапеции — это отрезок, перпендикулярный ее основаниям. Проведем высоту из вершины .

Ответ: .

. Основания трапеции равны  и , боковая сторона, равная , образует с одним из оснований трапеции угол . Найдите площадь трапеции.

Рисунок к задаче 2

Это стандартная задача. Углы и  — односторонние, значит, их сумма равна , и тогда угол равен . Из треугольника найдем высоту . Катет, лежащий напротив угла в , равен половине гипотенузы. Получаем, что и площадь трапеции равна .

. Основания трапеции равны  и . Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из ее диагоналей.

Рисунок к задаче 3

Скажите, что вы видите на чертеже? Можно сказать, что изображена трапеция , и в ней проведена средняя линия. А можно увидеть и другое — два треугольника, и , в которых проведены средние линии.

Мы помним, что средняя линия треугольника — это отрезок, соединяющий середины двух его сторон. Средняя линия треугольника параллельна третьей его стороне и равна половине этой стороны.

Из треугольника  находим: .

В следующей задаче мы тоже воспользуемся свойством средней линии треугольника.

. Основания трапеции равны  и . Найдите отрезок, соединяющий середины диагоналей трапеции.

Рисунок к задаче 4

Проведем  — среднюю линию трапеции, . Легко доказать, что отрезок , соединяющий середины диагоналей трапеции, лежит на средней линии. Дальше все просто. Найдем отрезки  и , являющиеся средними линиями треугольников и , а затем отрезок . Он равен .

. Прямая, проведенная параллельно боковой стороне трапеции через конец меньшего основания, равного , отсекает треугольник, периметр которого равен . Найдите периметр трапеции.

Рисунок к задаче 5

Периметр треугольника равен сумме его сторон, то есть .

Периметр трапеции равен .

На сколько периметр трапеции больше периметра треугольника? Чему равен периметр трапеции?

Ответ: .

видеокурс для успешной сдачи ЕГЭ

«Полный видеокурс для успешной сдачи ЕГЭ по математике»

Этот курс заменяет полгода занятий с репетитором. Он включает в себя всю часть «B» и задачу «C1». Просто, понятно и доступно. Автор — репетитор-профессионал Анна Георгиевна Малкова.
Данного видеокурса достаточно для того, чтобы сдать ЕГЭ на «5».

Внимание! Тотальная распродажа! Именно сейчас вы можете получить все 5 дисков видеокурса по минимальной цене 5000 2500 рублей. Количество комплектов ограничено. Не опоздайте!
Заказать


Звоните нам: (495) 984 09 27 Образовательная компания «ЕГЭ-Студия».

+ 7 (800) 775-06-82 (бесплатный звонок по России)

Или нажмите на кнопку «Запишитесь в группу», чтобы заполнить контактную форму. Мы обязательно вам перезвоним.

Запишитесь в группу

Тригонометрия на ЕГЭ по математике. Задача 15 (С1) Полный видеокурс по математике, часть С
Сказать спасибо
ege-tv