Одна из сложных задач Профильного ЕГЭ по математике — задача с параметрами. В ЕГЭ 2022 года это №17. И даже в вариантах ОГЭ они есть. Что же означает это слово — параметр?
Толковый словарь (в который полезно время от времени заглядывать) дает ответ: «Параметр — это величина, характеризующая какое-нибудь основное свойство устройства, системы, явления или процесса».
Хорошо, параметр — это какая-либо характеристика, свойство системы или процесса.
Вот, например, ракета выводит космический аппарат в околоземное пространство. Как вы думаете — какие параметры влияют на его полет?
Если корабль запустить с первой космической скоростью, приближенно равной 7,9 км/с, он выйдет на круговую орбиту.
Вторая космическая скорость, приближенно равная 11,2 км/с, позволяет космическому кораблю преодолеть поле тяжести Земли. Третья космическая скорость, приближенно равная 16,7 км/с, дает возможность преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы.
А если скорость меньше первой космической? Значит, тонны металла, топлива и дорогостоящей аппаратуры рухнут на землю, сопровождаемые репликой растерянного комментатора: «Кажется, что-то пошло не так».
Скорость космического корабля можно — параметр, от которого зависит его дальнейшая траектория и судьба. Конечно, это не единственный параметр. В реальных задачах науки и техники, задействованы уравнения, включающие функции многих переменных и параметров, а также производные этих функций.
1. Теперь пример из школьной математики.
Все мы помним, что такое квадратное уравнение. Это уравнение вида , где коэффициент а не равен нулю.
Количество корней квадратного уравнения зависит от знака выражения, которое называется дискриминант.
Дискриминант квадратного уравнения:
Если , квадратное уравнение имеет два корня:
и
Если , квадратное уравнение имеет единственный корень
Если , квадратное уравнение не имеет действительных корней. Рассмотрим уравнение
. Его дискриминант равен
Если
, то есть
, это квадратное уравнение имеет два корня.
Если при
, уравнение имеет единственный корень.
Если , то есть с > 1, корней нет.
В нашем уравнении с — параметр, величина, которая принимать любые значения. Но от этого параметра с зависит количество корней данного уравнения.
Для того чтобы уверенно решать задачи с параметрами, необходимо отличное знание и алгебры, и планиметрии.
И еще две простые задачи с параметром.
2. Найдите значение параметра p, при котором уравнение имеет 2 различных корня.
Квадратное уравнение имеет два различных корня, когда .
Найдем дискриминант уравнения
В нем
Вспомним, как решаются квадратичные неравенства (вы проходили это в 9 классе).
Найдем корни квадратного уравнения . Это
и
Разложим левую часть неравенства на множители:
Значит,
Рисуем параболу с ветвями вверх. Она пересекает ось р в точках и
Записываем ответ:
3. При каких значениях параметра k система уравнений не имеет решений?
Оба уравнения системы — линейные. График линейного уравнения — прямая. Запишем уравнения системы в привычном для нас виде, выразив у через х:
Первое уравнение задает прямую с угловым коэффициентом . Второе уравнение — прямую с угловым коэффициентом -2.
Система уравнений не имеет решений, если эти прямые не пересекаются, то есть параллельны. Это значит, что и
.
Действительно, в этом случае первое уравнение задает прямую , а второе — параллельную ей прямую
Ответ: 10
Читаем дальше:
Графический метод решения задач с параметрами.
Благодарим за то, что пользуйтесь нашими публикациями. Информация на странице «Что такое параметр? Простые задачи с параметрами» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена: 08.05.2023