previous arrow
next arrow
Slider

Задание 17, Вариант 7 — разбор решения задачи

Фирма производит светильники. Расходы на производство 1 светильника зависят от объема производства и равны 1000 + 2n рублей, где n — число светильников, изготовленных за месяц. Цена светильника также зависит от объема производства и равна 10000 - n рублей. Найдите, при каком объеме производства прибыль максимальна.

Решение:

Пусть n — количество светильников, проданных за месяц. Прибыль от продажи n светильников за месяц

Z\left(n\right)=\left(1000+2n-10000+n\right)\cdot n=\left(3n-9000\right)\cdot n=3n^2-9000 \cdot n рублей.

Рассмотрим функцию от действительного аргумента Z(x), такую, что Z(x) совпадает с Z(n) при натуральных x. Это нужно для того, чтобы найти наибольшее значениеZ\left(n\right). Как мы знаем, производную можно брать только от непрерывной функции. Z\left(n\right) — функция натурального аргумента, а Z\left(x\right) непрерывна.

Z\left(x\right)=\left(3x-9000\right)x;\ \ x\ge 0;\ \ x\in [0;+\infty )

Z

Приравняем производную функции {\rm Z}\left({\rm x}\right) к нулю, чтобы найти точку максимума.

Z. Найдем знаки {\rm Z}{\rm

При x = 1500 производная меняет знак с «+» на «минус», значит, x=1500 — точка максимума. Тогда n=1500.

Есть и другой способ решения, без применения производной.

y=Z\left(x\right)=\left(9000-3x\right)x=9000x-3x^2. Это квадратичная парабола с ветвями вниз, и наибольшее значение достигается в вершине параболы:

x_0=\frac{9000}{6}=1500

Ответ: 1500

Смотреть все задачи варианта