previous arrow
next arrow
Slider

Задание 18, Вариант 7 — разбор решения задачи

(ФИПИ) Найдите все значения параметра a, при каждом из которых уравнение \frac{x^3+x^2-9\ a^2x-2x+a}{x^3-9\ a^2x}=1 имеет ровно один корень.

Решение:

\frac{x^3+x^2-9\ a^2x-2x+a}{x^3-9\ a^2x}=1

Преобразуем уравнение так, как мы делаем с обычными дробно-рациональными уравнениями, не содержащими параметра.

{{x^3+x^2-9a^2x-2x+a}\over{x^3-9a^2x}}=1\Leftrightarrow \left\{\begin{matrix} x^3+x^2-9a^2x-2x+a=x^3-9a^2x\\ x^3-9a^2\neq0 \hfill \end{matrix}\right. \Leftrightarrow
\left\{\begin{matrix} x^3-9a^2x\neq0 \hfill\\x^2-2x+a=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\left ( x^2-9a^2 \right )\neq 0\\ a=2x-x^2 \hfill \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x\neq 0 \hfill\\x\neq 3a \hfill \\x\neq -3a \hfill \\a=2x-x^2 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x\neq 0\hfill \\a\neq {{x}\over{3}} \hfill \\ a\neq -{{x}\over{3}} \hfill \\ a=2x-x^2 \end{matrix}\right.

Решим систему графически в координатах x; a.

Найдем с помощью графика, каким значениям a соответствует ровно одно значение х. Это значит, что исходное уравнение имеет единственное решение.

Это происходит в следующих случаях:

1) Если a=0. Прямая a=0. проходит через точку A (0;0), общую для параболы и прямых a=-\frac{x}{3} и a=\frac{x}{3}. Уравнение имеет единственное решение x=2.

2) Если горизонтальная прямая проходит через точку B, в которой параболу пересекает прямая a=\frac{x}{3}. Решив систему уравнений

\left\{\begin{matrix} a=2x-x^2\\a=\frac{x}{3} \hfill \end{matrix}\right.

- найдем, что для точки В значение параметра a=\frac{5}{9}.

3) Если горизонтальная прямая проходит через точку C, в которой параболу пересекает прямая a=-\frac{x}{3}. Решив систему уравнений

\left\{\begin{matrix} a=2x-x^2\\a=-\frac{x}{3} \hfill \end{matrix}\right.

- найдем, что для точки C значение параметра a=-\frac{7}{9}.

Если a=1. Прямая a=1 проходит через точку D(1;1) — вершины параболы — и соответствует единственному решению уравнения x=1.

Ответ: -\frac{7}{9};0;\ \frac{5}{9};1.

Смотреть все задачи варианта