previous arrow
next arrow
Slider

Задание 19, Вариант 4 — разбор решения задачи

Марина добиралась от дома до института на своем автомобиле с постоянной скоростью 100 км/ч. Обратно она ехала с постоянной скоростью, которая измерялась целым числом километров в час, причем путь до дома занял у нее больше времени, чем путь до института.

а) Могла ли ее средняя скорость за эти две поездки составить 90 км/ч?

б) Могла ли ее средняя скорость за эти две поездки оказаться равной целому числу километров в час?

в) Какое наименьшее целое число километров в час могла составлять ее средняя скорость за эти две поездки?

Решение:

По условию,

v_1=100 км/ч — скорость Марины по дороге в институт,

v_2=n км/ч — скорость Марины по дороге домой, причем  — целое.

Средняя скорость находится по формуле:

а) Нет, не могла. Предположим, что 
\frac{1}{100}+\frac{1}{n}=\frac{1}{45}; \frac{1}{n}=\frac{20}{45}-\frac{9}{100}=\frac{1}{5}\left(\frac{1}{9}-\frac{1}{20}\right)=\frac{1}{5}\cdot \frac{11}{180};

n=\frac{900}{11} — не является целым. Получили противоречие с условием.

б) Пусть  - целое число. Подставим m в формулу для средней скорости.

\frac{2}{\frac{1}{100}+\frac{1}{n}}=m;{\rm \ \ }\frac{1}{100}+\frac{1}{n}=\frac{2}{m}

Приведем дроби в левой части уравнения к одному знаменателю и выразим m через n.

\frac{2}{m}-\frac{1}{n}=\frac{1}{100}; \frac{2n-m}{mn}=\frac{1}{100}; \ \ \ \ \ mn=200n-100m;

m\left(n+100\right)=200n;\ \ m=\frac{200n}{n+100}.

Подберем n, при котором m — целое.

если n=60, m=\frac{200\cdot 60}{160}=75.

Да, средняя скорость могла быть целым числом.

в) Найдем наименьшее возможное целое m.

m=\frac{200n}{n+100}.

Выделим целую часть в этой формуле. Это стандартный прием в решении задач на числа и их свойства. Сейчас переменная n - и в числителе, и в знаменателе. Выделение целой части поможет сделать так, чтобы переменная n осталась только в числителе, и тогда мы сможем оценить m,

m=\frac{200n+20000-20000}{n+100}=200-\frac{20000}{n+100};

По условию, m — целое. Значит, \frac{20000}{n+100} — целое и 20000 делится на (n+100)

(знак \vdots \ означает «делится без остатка»)

Получим: 20000\vdots (n+100), где n<100.

По основной теореме арифметики, представим число 20000 как произведение простых множителей, взятых в натуральных степенях.
20000=2\cdot {10}^4=2^5\cdot 5^4.
Чтобы 20000 делилось без остатка на n+100, число n+100 должно содержать в качестве множителей только двойки и пятерки, взятые в некоторых степенях.

n+100=2^k\cdot 5^p, где k\le 5,\ \ \ p\le 4.

По условию, 0<n<100. Тогда 100<n+100<200. И теперь — перебор вариантов. Осмысленный перебор. Согласно определенному правилу.

Пусть p=0. Тогда n+100=2^k, то есть число n+100 является степенью двойки. Однако 2^5=32 а n+100>100, значит, p=0 не подходит и число n+100 должно делиться на 5.

Пусть p=1. Тогда n+100=5\cdot 2^k. Подходит только k=5. При этом n+100=160, n=60.

3) p=2. Тогда x+100=25\cdot 2^k, нет целых решений для 0<x<100.

4) p=3. Тогда n+100=125\cdot 2^k. Подходит только k=0, при этом n=25.

5) p=4. Тогда n+100=625\cdot 2^k, но при этом n+100>200 — не подходит.

Остаются два варианта.

Первый: n=60, и при этом m=75.

Второй: n=25, m=40.

Наименьше возможное m равно 40.

Ответ:

а) нет

б) да

в) 40.

Смотреть все задачи варианта