previous arrow
next arrow
Slider

Задание 8, Вариант 1 — разбор решения задачи

Авторская задача. Диаметр апельсина равен 10 см. Диаметр апельсина без кожуры равен 8 см. Сколько процентов от объема апельсина занимает кожура? Апельсин (в кожуре и без нее) считать шарообразным.

Решение:

Обозначим D_1=10см - диаметр апельсина с кожурой, D_2 = 8 см - диаметр апельсина без кожуры.

Пусть V_1\ - объем апельсина с кожурой, V_2 - объем апельсина без кожуры. Тогда кожура апельсина занимает объем, равный V_1-\ V_2. Найдем отношение объема кожуры к объему всего апельсина и умножим на 100%. Это и будет ответ.

Формула объема шара: V=\frac{4}{3} \pi R^3.

\frac{V_1-V_2}{V_1}\cdot 100\%=\frac{\frac{4}{3}\pi{R_1}^3-\frac{4}{3}\pi{R_2}^3}{\frac{4}{3}\pi{R_1}^3}=\frac{{R_1}^3-{R_2}^3}{{R_1}^3}=\frac{{D_1}^3-{D_2}^3}{{D_1}^3}= \frac{{10}^3-8^3}{{10}^3}=\frac{\left(10-8\right)({10}^2+8\cdot 10+8^2)}{1000}=\frac{2\cdot 244}{1000}=48,8\%.

Мы получили, что объем кожуры равен почти половине объема апельсина!

Ответ: 48,8

Смотреть все задачи варианта