Slider

Маттренинги Вариант 1

Большинство задач этого варианта - авторские задачи Анны Малковой.

Часть 1. Задания с кратким ответом

1. Авторская задача. Все учащиеся 11А и 11Б написали сочинение. Среднее арифметическое баллов за сочинение в 11А классе равно 71, а в 11Б классе 82. Средний балл среди всех учащихся равен 76. Во сколько раз в 11А классе больше учащихся, чем в 11Б?

Посмотреть решение

2. На рисунке показан график движения автомобиля по маршруту. На оси абсцисс откладывается время (в часах), на оси ординат — пройденный путь (в километрах). Найдите среднюю скорость движения автомобиля на данном маршруте. Ответ дайте в км/ч.

Посмотреть решение

3. Авторская задача. На координатной плоскости заданы точки А(5; 0), В(0; 4), С(7; 7) и D(12; 0). Найдите площадь четырехугольника АВСD.

Посмотреть решение

4. Авторская задача. По статистике, только 10% из тех, кто создает свой первый бизнес, достигают успеха. Из тех, кто вторично открывает свое дело, успеха достигают 90%. При этом только 8% из тех, у кого первый бизнес оказался неудачным, готовы стартовать еще раз. Найдите вероятность создания успешного бизнеса с первой или второй попытки.

Посмотреть решение

5. Решите уравнение \ tg\ \frac{\pi {\rm \ }\left({\rm \ x+1}\right)}{{\rm 4}}=\ -1. В ответе напишите наименьший положительный корень.

Посмотреть решение

6. Авторская задача.  В прямоугольном треугольнике АВС угол между медианой и высотой, проведенными из вершины прямого угла С, равен 30^{\circ}. Найдите меньший угол треугольника АВС. Ответ выразите в градусах.

Посмотреть решение

7. Авторская задача. На рисунке изображен график y=f — производной функции y = f(x). В какой точке отрезка [1; 5] функция y = f(x) принимает наименьшее значение?

Посмотреть решение

8. Авторская задача. Диаметр апельсина равен 10 см. Диаметр апельсина без кожуры равен 8 см. Сколько процентов от объема апельсина занимает кожура? Апельсин (в кожуре и без нее) считать шарообразным.

Посмотреть решение

9. Найдите значение выражения \frac{2\ sin\left(\alpha -3\pi\right)-{cos (-\frac{\pi}{2}+\ \alpha)\ }}{5{sin \left(\alpha-\pi\right)\ }}

Посмотреть решение

10. Зависимость объема спроса q (единиц в месяц) на продукцию предприятия-монополиста от цены p  (тыс. руб.) задаётся формулой q = 100 - 10p. Выручка предприятия за месяц (в тыс. руб.) вычисляется по формуле r(p) = qp. Определите наибольшую цену p, при которой месячная выручка r(p) составит не менее 240 тыс. руб. Ответ приведите в тыс. руб.

Посмотреть решение

11. Один резервуар содержит  воды, другой воды. Труба, наполняющая первый резервуар, пропускает на  в час меньше, чем труба, наполняющая второй. Краны открываются одновременно. Через сколько часов количество воды в резервуарах сравняется?

Посмотреть решение

12. Найдите наибольшее значение функции

y=16cosx-\frac{102}{\pi}x+41 на отрезке [-\frac{2\pi}{3}; 0].

Посмотреть решение

Часть 2. Задания с развернутым ответом

13. а) Решите уравнение 

б) Найдите все корни этого уравнения, принадлежащие отрезку [ \frac{7\pi }{2}; 5 \pi].

Посмотреть решение

14. В правильной треугольной призме ABCA_{1}B_{1}C_{1} сторона AB основания равна 12, а высота призмы равна 2. На рёбрах B_{1}C_{1} и AB отмечены точки P и Q соответственно, причём PC_{1}=3, а AQ=4. Плоскость A_{1}PQ пересекает ребро BC в точке M.

а) Докажите, что точка M является серединой ребра BC.

б) Найдите расстояние от точки B до плоскости A_{1}PQ.

Посмотреть решение

15. Решите неравенство
\frac{lg^2{\rm x-3}{\lg x\ }{\rm +3}}{{\lg x-1\ }}\le {\rm 1}

Посмотреть решение

16. Авторская задача Пусть АВ — хорда окружности с центром О, СВ - касательная к этой окружности, точки А и В лежат по разные стороны от прямой ОС. Радиус окружности ОВ = 4, АВ = 2\sqrt{{\rm 11}}, углы ОСВ и ОАВ равны.

а) Докажите, что точка О лежит на окружности \Omega , описанной вокруг треугольника АВС.

б) Найдите радиус окружности \Omega .

Посмотреть решение

17. Авторская задача Маша мечтает о квартире за 3600 000 рублей. В настоящий момент Маша располагает 1 миллионом рублей и собирается поместить всю сумму в банк под 10% годовых, рассчитывая в течение каждого из первых трех лет после начисления банком процентов вносить на счет еще по 600 тысяч рублей. Предположим, что стоимость квартиры не изменится. Сможет ли она купить такую квартиру через 4 года? Помоги Маше посчитать!

Посмотреть решение

18. Авторская задача При каких значениях параметра а найдется такое значение параметра b > 0, что система уравнений

\left\{\ \begin{matrix}\frac{\sqrt{x-1}\ \sqrt{y-1}\ \left(4+\ \sqrt{2}-x-y\right)}{{\left({\rm x}{\rm -}{\rm 1}\right)}^{{\rm 2}}{\rm +\ }{\left({\rm y}{\rm -}1\right)}^{{\rm 2}}}=0 \\\ \ \\{\left({\rm x}{\rm -}{\rm a}\right)}^{{\rm 2}}{\rm +\ }{\left({\rm y}{\rm -}a\right)}^{{\rm 2}}{\rm =\ }b^{{\rm 2}} \end{matrix}\right.

имеет ровно три различных решения?

Посмотреть решение

19. У Бори нет источника воды, но есть три ведра различных объемов, в двух из которых есть вода. За один шаг Боря переливает воду из ведра, в котором она есть, в другое ведро. Переливание заканчивается в тот момент, когда или первое ведро опустеет, или второе заполнится. Выливать воду из ведер запрещается.

а) Мог ли Боря через несколько шагов получить в одном из ведер ровно 2 литра воды, если сначала у него были ведра объемом 4 литра и 7 литров, полные воды, а также пустое ведро объемом 8 литров?

б) Мог ли Боря через несколько шагов получить равные объемы воды во всех ведрах, если сначала у него были ведра объемами 5 литров и 7 литров, полные воды, а также пустое ведро объемом 10 литров?

в) Сначала у Бори были ведра объемами 3 литра и 6 литров, полные воды, а также пустое ведро о бъемом n литров. Какое наибольшее натуральное значение может принимать n, если известно, что Боря смог получить через несколько шагов ровно 4 литра воды в одном из ведер?

Посмотреть решение

Посмотреть ответы к задачам 1-12 Посмотреть видеоразбор

 

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

НОВЫЙ НАБОР 2020 ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.