previous arrow
next arrow
Slider

Задание 8, Вариант 6 — разбор решения задачи

В основании прямой призмы лежит прямоугольный треугольник с катетами 4 и 1. Боковые ребра равны \frac{2}{\pi}. Найдите объем цилиндра, описанного около этой призмы.

Решение:

Объем цилиндра 

Вписанный угол, опирающийся на диаметр, прямой. Значит, гипотенуза АВ прямоугольного треугольника является диаметром окружности.

{AB}^2=1+4^2=17

R^2=(\frac{AB}{2})^2=\frac{{AB}^2}{4}=\frac{17}{4}.

Ответ: 8,5

Смотреть все задачи варианта