Молекулярная физика. Расчетная задача
В. З. Шапиро
Это задание также относится к высокому уровню сложности. Как правило, тематика этого задания «МКТ» и «Термодинамика». Какие-то задачи требуют только формульного решения, какие-то необходимо сопровождать графическими пояснениями термодинамических процессов. В любом случае, теоретический материал полностью соответствует кодификатору элементов содержания и спецификации контрольных измерительных материалов.
1. В вертикальном цилиндре, закрытом лёгким поршнем, находится бензол при температуре кипения
При сообщении бензолу некоторого количества теплоты часть его превращается в пар, который при изобарном расширении совершает работу, поднимая поршень. Удельная теплота парообразования бензола
Дж/кг, а его молярная масса
кг/моль. Какая часть подводимого к бензолу количества теплоты идёт на увеличение внутренней энергии системы? Объёмом жидкого бензола и трением между поршнем и цилиндром пренебречь.
Необходимая теория:
Дано: «СИ»
Дж/кг;
кг/моль.
Найти: — ?
Решение:
Запишем первый закон термодинамики для изобарного процесса:
Выразим из этого равенства изменение внутренней энергии:
Для запишем:
(1).
Работу газа в изобарном процессе можно рассчитать по формуле:
с учетом уравнения Менделеева-Клапейрона получим:
(2).
При совершении работы давление бензола не изменяется, так как поршень в цилиндре легкоподвижный. Давление бензола все время остается равным атмосферному.
При этом
– масса бензола, превратившегося в газообразное состояние.
Количество теплоты, которое идет на превращение бензола в это состояние можно рассчитать по формуле:
Выражение для работы бензола (2) и количества теплоты (3) подставим в уравнение (1).
После сокращения на получим искомую формулу:
Подставим численные значения и проведем расчет:
Ответ: 0,905.
Секрет решения. На первый взгляд задача кажется несложной, но в ней «спрятаны» несколько искусственных приемов, до которых додуматься достаточно сложно. Первый прием – выражение Это математический ход, который сразу подсказывает, что конкретно надо находить в этой задаче.
Второй прием – получение равенства, используя уравнения Менделеева-Клапейрона Здесь надо придерживаться следующих рассуждений: если в левой части уравнения есть переменная величина (в этой задаче
), то и в правой части должна изменяться какая-то физическая величина (в этой задаче
). Можно сказать еще проще: если в левой части равенства есть знак дельта "
", то и в правой части он должен обязательно появиться. В крайнем случае, можно «перебрать» все величины из правой части: температура не может изменяться, так как при парообразовании она всегда постоянна; молярная масса также неизменна, потому что речь идет об одном и том же газе; R – табличная величина. Остается только
Эти рассуждения помогут понять ситуацию, описанную в задаче и правильно ее решить.
2. Одно и то же постоянное количество одноатомного идеального газа расширяется из одного и того же начального состояния до одного и того же конечного объёма
первый раз по изобаре 1–2, а второй по адиабате 1–3 (см. рисунок). Отношение работы газа в процессе 1–2 к работе газа в процессе 1–3 равно
=к=2. Чему равно отношение х количества теплоты
полученного газом от нагревателя в ходе процесса 1–2, к модулю изменения внутренней энергии газа
в ходе процесса 1–3?
Необходимая теория:
Дано:
1–2 р=const;
2–3 Q=const;
=к=2.
Найти:
Решение:
Для участка 1–2 применим первый закон термодинамики с учетом изобарного процесса.
Работу газа при расширении найдем как площадь прямоугольника под графиком.
Изменение внутренней энергии одноатомного идеального газа запишем в виде формулы:
Применим уравнение Менделеева-Клапейрона:
Тогда (3) примет вид:
(4).
Таким образом количество теплоты на участке 12 равно:
(5).
Для участка 1–3 применим первый закон термодинамики с учетом адиабатного процесса.
но так как
запишем:
или
Это выражение означает, что газ на участке 13 совершает работу за счет уменьшения своей внутренней энергии.
Учтем, что по условию =к=2, тогда:
Используя (5) и (6) получим искомую формулу:
Ответ: 5.
Секрет решения. Несмотря на громоздкие расчеты и обилие разных индексов в уравнениях, задача является среднего уровня сложности. Надо знать:
- первый закон термодинамики;
- его применение к изопроцессам;
- формулы, выражающие работу газа и его внутреннюю энергию (только для одноатомного идеального газа);
- уметь «читать» графики;
- понимать, что при расширении газ совершает положительную работу, при сжатии – отрицательную работу;
- проводить рассуждения о том, откуда газ берет энергию для совершения работы (за счет своей внутренней энергии или за счет поступления энергии извне);
- указанные пункты описывать соответствующими уравнениями.
Суть любой задачи по физике – описание физических процессов математическими уравнениями, которые надо решить удобным (рациональным) способом.
3. В тепловом двигателе 1 моль одноатомного разряженного газа совершает цикл 1–2–3–4–1, показанный на графике в координатах p–T, где p – давление газа, Т – абсолютная температура. Температуры в точках 2 и 4 равны и превышают температуру в точке 1 в 2 раза. Определите КПД цикла.
Дано:
Найти: – ?
Решение:
КПД теплового двигателя определяется формулой:
– полезная работа, совершенная газом за цикл, Q – полученное за цикл количество теплоты. Можно графически рассчитать работу, если перерисовать данный цикл в координатах рV. Проведем анализ каждого процесса.
12: V=const, p↑, T↑;
23: p=const, T↑, V↑;
34: V=const, p↓, T↓;
41: p=const, T↓, V↓.
В координатах рV график будет иметь вид:
Работа газа за цикл будет определяться площадью прямоугольника 1-2-3-4.
Учтем, что
Поэтому (на основании закона Шарля).
(на основании закона Гей-Люссака).
Таким образом, можно выразить полезную работу через и
Газ получает положительное количество теплоты на участках 1–2 и 2–3.
Применим к этим участкам первый закон термодинамики.
Но работа газа на этом участке равна нулю, так как процесс изохорный.
С учетом уравнения Менделеева-Клапейрона и
получим:
(2).
Для участка 23 первый закон термодинамики примет вид:
Работа определяется площадью прямоугольника под участком 23.
(4).
С учетом уравнения Менделеева-Клапейрона (4) примет вид:
(5).
Таким образом, полученное количество теплоты на участке 23 равно:
Общее количество теплоты, полученное за цикл:
(6).
Полученные выражения из (1) и (6) подставим в формулу КПД.
Ответ: 15,3%.
Секрет решения. За задачи на определение КПД тепловой машины по графику надо получать максимальные 3 балла. Эти задания сопровождаются большими расчетами, поэтому на первое место надо ставить внимательность их выполнения.
Необходимо выделить следующие моменты в решении:
- определять работу графически можно только в координатах рV;
- если в условии дан график в других координатах, то его надо перечертить в рV;
- поэтапно применять первый закон термодинамики и газовые законы для всех процессов;
- свести в единую формулу полученные данные для расчета КПД.
Благодарим за то, что пользуйтесь нашими статьями. Информация на странице «Задание 30 ЕГЭ по физике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена: 08.05.2023