previous arrow
next arrow
Slider

ОГЭ. Решение. Задание 26, Вариант 2

Условие задачи

Углы при одном из оснований трапеции равны 50° и 40°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 15 и 13. Найдите основания трапеции.

Решение

Пусть продолжения боковых сторон трапеции пересекаются в точке К. Поскольку сумма углов А и С равна 90 градусов, угол К – прямой.
Треугольники АКD и ВКС – прямоугольные, КЕ и КF – их медианы, значит, \(KE= \frac{BC}{2}, KF = \frac{AD}{2}, EF = KF - KE = \frac{AD-BC}{2}.\)

Получается, что полуразность оснований трапеции ЕF = 13, а полусумма оснований, то есть средняя линия, GH = 15. Тогда основания трапеции равны 28 и 2.

Ответ:

28 и 2.