Slider

Задача 17 Профильного ЕГЭ по математике. Кредиты и вклады. Начисление процентов.

Задание 17 Профильного ЕГЭ по математике – это задача с экономическим содержанием.

Это может быть задача на кредиты и вклады. Или на нахождение наибольшего (наименьшего) значения какой-либо функции (прибыли, зарплат, времени работы). Мы разберем и те, и другие.

Начнем с задач о кредитах и вкладах. Прежде чем браться за реальные задания ЕГЭ из Банка заданий ФИПИ, подумаем – как вообще работает банк?

Доход банка образуется в виде разницы между процентом кредита и процентом вклада. Например, клиент банка положил на свой сберегательный счет 100 тысяч рублей под 10 % годовых – то есть открыл вклад. Через год он может получить в банке 110 тысяч рублей. Другому клиенту, наоборот, нужны 100 тысяч рублей. Банк выдает ему кредит под 30 % годовых, и теперь этот клиент должен вернуть банку 130 тысяч рублей. Таким образом, прибыль банка составит 130 – 110 = 20 (тысяч рублей).

Конечно же, процентные ставки банка по кредиту выше, чем процентные ставки по вкладу.

Вспомним формулы из темы «Проценты». Без них задачи на кредиты и вклады не решить!

Сначала - несколько контрольных вопросов:

1. Что принимается за 100%?

2. Величина х увеличилась на p%. Как это записать?

3. Величина y дважды увеличилась на р%. Как это записать?

И ответы на вопросы:

1. за 100% мы принимаем ту величину, с которой сравниваем.

2. если величину x увеличить на p процентов, получим x\cdot \left ( 1+\frac{p}{100} \right );

если величину x уменьшить на p процентов, получим
x\cdot \left ( 1-\frac{p}{100} \right );

если величину x увеличить на p процентов, а затем уменьшить на q процентов, получим x\cdot \left ( 1+\frac{p}{100} \right )\cdot \left ( 1-\frac{q}{100} \right );

3. если величину x дважды увеличить на p процентов, получим x\cdot \left ( 1+\frac{p}{100} \right )^{2};

4. если величину x дважды уменьшить на p процентов, получим x\cdot \left ( 1-\frac{p}{100} \right )^{2}.

Вот простая подготовительная задача.

Клиент А. сделал вклад в банке в размере 7700 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал клиент Б. Еще ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на 847 рублей больше клиента Б. Какой процент годовых начислял банк по этим вкладам?

Пусть банк начисляет p% в год.

У клиента А после начисления процентов через год сумма вклада станет равной 7700\left ( 1+\frac{p}{100} \right ). Соответственно, через два года эта сумма станет равной 7700\left ( 1+\frac{p}{100} \right )^{2}

Клиент В сделал вклад позже, чем клиент А, на год. У него сумма вклада через год станет равной 7700\left ( 1+\frac{p}{100} \right ) .

Так как клиент А получил на 847 рублей больше клиента В, то
7700\left ( 1+\frac{p}{100} \right )^{2}-7700\left ( 1+\frac{p}{100} \right )=847

Вынесем 7700 за скобки:
7700\left (\left ( 1+\frac{p}{100} \right )^{2}-\left ( 1+\frac{p}{100} \right ) \right )=847

Чтобы не получить квадратное уравнение с огромными коэффициентами, сократим обе части уравнения на 77.

100\left (\left ( 1+\frac{p}{100} \right )^{2}-\left ( 1+\frac{p}{100} \right ) \right )=11

Сделаем замену 1+\frac{p}{100}=k
100\left ( k^{2}-k \right )=11

100k^{2}-100k=11

100k^{2}-100k-11=0

Его корни x_{1}=-0,1 и x_{2}=1,1. Отрицательный корень нам не подходит, поэтому x=1,1.

Сделав обратную замену, получим

1+\frac{p}{100}=1,1

Отсюда p = 10%.

Ответ: 10.

Еще одна задача – на этот раз о кредите.

2. Костя оформил кредитную карту на 244 тысячи рублей под 25% годовых и расплачивался ею при каждой покупке. Через неделю деньги на карте кончились, и Костя обнаружил, что обязан погасить долг тремя равными ежегодными платежами. Сколько собственных денег Костя выплатит банку сверх суммы, взятой в кредит?

Обозначим сумму кредита S, где S=244000 рублей.

Проценты начисляются ежегодно, и после первого начисления процентов сумма долга равна
\left ( 1+\frac{25}{100} \right )S=\frac{5}{4}S=kS.

Переменная k - коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов;
k=1+\frac{p}{100}, где p – процентная ставка банка.

Костя обязан ежегодно выплачивать банку X рублей. После первой выплаты сумма долга равна \frac{5}{4}S-X=kS-X рублей.

Банк снова начисляет р процентов, и сумма долга становится равна
\left ( kS-X \right )k рублей, где k=1,25=\frac{5}{4}. Костя снова перечисляет в банк X рублей.

Теперь сумма долга равна
\left ( kS-X \right )k-X рублей.

Банк в третий раз начисляет проценты, и сумма долга равна
\left (\left ( kS-X \right )\cdot k-X \right )\cdot k рублей.

И снова Костя переводит в банк X рублей. Теперь его долг равен нулю.

\left (\left ( kS-X \right )\cdot k-X \right )\cdot k-X=0.

Выразим Х (ежегодный платеж Кости) из этого уравнения. Раскрыв скобки, получим:
Sk^{3}-X\left ( k^{2}+k+1 \right )=0;
X=\frac{Sk^{3}}{k^{2}+k+1}.Осталось подставить числовые данные.

Будем вести расчеты в тысячах рублей, а значение k возьмем равным \frac{5}{4}. Это удобнее для расчетов, чем 1,25.

X=\frac{Sk^{3}}{k^{2}+k+1}=\frac{244\cdot 5^{3}}{4^{3}\left ( \left ( \frac{5}{4} \right )^{2}+\frac{5}{4}+1 \right )}=\frac{244\cdot 125}{64\left ( \frac{25}{16} +\frac{5}{4}+1\right )}=\frac{244\cdot 125}{100+80+64}=125 тысяч рублей.

Всего Костя выплатит банку 3X=375 тысяч рублей, что на 375 – 244 = 131 тысячу рублей больше суммы, взятой в кредит.

Вот задача на вклады, где надо составить, упростить и решить систему уравнений. Постарайтесь справиться самостоятельно.

3. В начале года \frac{5}{6} некоторой суммы денег вложили в банк А, а то, что осталось — в банк Б. Если вклад находится в банке с начала года, то к концу года он возрастает на определённый процент, величина которого зависит от банка. Известно, что к концу первого года сумма вкладов стала равна 670 у. е. (условных единиц), к концу следующего — 749 у. е. Если бы первоначально \frac{5}{6} суммы было вложено в банк Б, а оставшуюся вложили бы в банк А, то по истечении одного года сумма выросла бы до 710 у. е. Определите сумму вкладов по истечении второго года в этом случае.

Пусть первоначальная сумма равна 6S – чтобы удобнее было записать \frac{1}{6} и \frac{5}{6} этой суммы.

Пусть банк A начисляет p процентов годовых. Тогда сумма, внесенная на счет в банке А, за год увеличивается в 1+\frac{p}{100}=k раз, а за 2 года в k^{2} раз.

Банк Б начисляет q процентов годовых. За год сумма, внесенная на счет в банке Б, увеличивается в 1+\frac{q}{100}=m раз, а за 2 года в m^{2} раз.

Надо найти Sk^{2}+5Sm^{2}. Составим систему уравнений:

\left\{\begin{matrix}5Sk+Sm=670 \;\;\;\;(1)\\5Sk^{2}+Sm^{2}=749 \;\;(2)\\Sk+5Sm=710\;\;\;\;\;(3)\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}6S\left ( m+k \right )=1380\\4S\left ( m-k \right )=40\\5Sk^{2}+Sm^{2}=749\end{matrix}\right.\Leftrightarrow
\Leftrightarrow\left\{\begin{matrix}m+k=\frac{230}{S}\\m-k=\frac{10}{S}\\5Sk^{2}+Sm^{2}=749\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}2m=\frac{240}{S}\vspace{2mm}\\2k=\frac{220}{S}\vspace{2mm}\\5Sk^{2}+Sm^{2}=749\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}m=\frac{120}{S} \vspace{2mm}\\k=\frac{110}{S} \vspace{2mm}\\5Sk^{2}+Sm^{2}=749\end{matrix}\right.

Подставим значения m и k в третье уравнение:

S\left ( 5\cdot \frac{110^{2}}{S^{2}} +\frac{120^{2}}{S^{2}}\right )=749

\frac{100}{S}\cdot \left ( 5\cdot 121+144 \right )=749

\frac{100}{S}\cdot749=749

S=100.

Осталось вычислить Sk^{2}+5Sm^{2}.

Ответ: 841.

Пора переходить к реальным задачам ЕГЭ о кредитах (задачи на вклады решаются похожим способом).

Запомним – есть всего две схемы решения задач на кредиты.

Первая – когда выплаты производятся равными платежами. Или есть информация о платежах.

Вторая – когда сумма долга уменьшается равномерно. Или есть информация о том, как уменьшается сумма долга.

Начнем с первой схемы.

 

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

НОВЫЙ НАБОР 2020 ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

Вы получите:

— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных