Slider

Как запоминать формулы? Лайфхаки для ЕГЭ и ОГЭ

Анна Малкова

Что проще запомнить с первого раза и пересказать другу – сюжет интересного фильма или большую таблицу с формулами по геометрии?

Мы хорошо запоминаем сюжеты и истории. А однообразная и скучная информация быстро вылетает из головы.

Можно запоминать формулы «как буковки». Долго, трудно и напряженно. Результат – вы сами знаете, какой.

А можно придумать историю. Понять, почему формула именно такая. Как она получилась. На что она похожа.

Например, формулы для площадей геометрических фигур. Они есть в нашем ЕГЭ-Справочнике

 

Площадь прямоугольника равна произведению его сторон: S=a\cdot b

Чем больше стороны, тем больше площадь. Проверяйте, чтобы площадь была выражена в квадратных единицах.

Отрежем от нашего прямоугольника треугольник. И переставим этот треугольник, как на рисунке, получим параллелограмм.

Площадь параллелограмма: S=a\cdot h

Поделим параллелограмм пополам. Получим два равных треугольника и формулу для  площади треугольника:

S=\frac{ah}{2}

Теперь трапеция. Поделим ее на два треугольника с основаниями a  и  b.

Площадь трапеции

 

В формулы для длины окружности и площади круга входит число \pi .

Длина окружности 

L=\pi D=2\pi R.

Число \pi – это отношение длины окружности к ее диаметру.

\pi \approx 3,1415926.

Число \pi известно с глубокой древности. С давних времен – с доисторических – люди плели круглые корзины и лепили из глины круглые тарелки и миски. Во всяком случае, старались сделать их круглыми.

Нарисуйте древнего человека, который плетет корзинку. Он смотрит на небо и видит на нем круглое солнце. Он старается, чтобы его корзина получилась круглой, как солнце. Измерив диаметр своего изделия, наш первобытный труженик осознает, что диаметр укладывается на окружности корзины три раза, и еще немного остается! Причем это справедливо и для маленькой корзины, и для большой. Удивительное открытие!

Во сколько же раз длина окружности больше, чем ее диаметр? В \pi  раз.

A площадь выражается в квадратных единицах, значит, в формуле должен быть квадрат радиуса.

Площадь круга

Формулу для площади сектора запомнить легко. Кусочки, на которые вы нарезаете круглую пиццу, – это секторы.

Вспомним, что 1 градус – это \frac{1}{360} часть полного круга. Тогда площадь сектора в 1 градус равна \frac{1}{360} части полного круга. А площадь сектора в \alpha градусов равна \frac{\alpha }{360} части полного круга.

Точно так же для длины дуги:

Есть отличная «запоминалка», и ее все знают.

Биссектриса – это крыса, которая бегает по углам и делит угол пополам.

Нарисуем угол, который крыса делит пополам, и эта крыса тащит за собой (на хвосте) круглый сыр. Центр окружности, вписанной в угол, лежит на биссектрисе угла.

Прогоним крысу, оставим вписанную в угол окружность. Отрезки касательных, проведенных из одной точки к окружности, равны.

А поскольку прямоугольные треугольники АОВ и СОВ на рисунке равны – значит, равны расстояния от точки  до точек  и . Биссектриса угла треугольника – это множество точек, равноудаленных от сторон угла.

Впишем в треугольник окружность. Окружность касается всех сторон треугольника – значит, ее центр одинаково удален от сторон АВ, ВС и АС. Центр окружности, вписанной  в треугольник, – это  точка пересечения его биссектрис.

А где же находится центр окружности, описанной вокруг треугольника? Очевидно, что расстояние от этой точки до всех вершин треугольника одинаково и равно радиусу описанной окружности.

Где находятся точки, равноудаленные от концов отрезка, вы знаете. На серединном перпендикуляре к отрезку.

Вот и нарисуем три серединных перпендикуляра к сторонам треугольника. А в точке, где все они пересекаются, уселась киса, чтобы быть на одинаковом расстоянии от вершин треугольника. А что делает киса? – правильно, писает! Хочет до всех вершин треугольника достать. И получается окружность, описанная вокруг треугольника.

Чтобы легко запоминать формулы, придумывайте истории. Глупые, смешные, даже неприличные.  И картинки к ним рисуйте!

Теперь стереометрия. Будем искать логические связи. Ассоциации. Придумываеть себе «запоминалки».

Посмотрим на таблицу с формулами для объемов и площадей поверхности многогранников  и тел вращения.

С призмой и цилиндром все просто – их объем равен произведению площади основания на высоту.

Чем больше площадь основания, тем больше объем.

Чем больше высота, тем больше объем.

 

Объем призмы

Объем цилиндра

С объемами пирамиды и конуса тоже просто: умножаем \frac{1}{3} на площадь основания и на высоту. Как вы думаете, почему у пирамиды и у конуса похожие формулы для объема?

Объем пирамиды

Объем конуса

Площадь боковой поверхности многогранника равна сумме площадей всех его граней. Сложные формулы здесь не нужны.

Теперь цилиндр. В его основаниях – два круга. Как запомнить, чему равна площадь поверхности цилиндра? Развернем боковую поверхность цилиндра и получим  прямоугольник, одна сторона которого равна 2\pi R, а другая равна h.

Площадь боковой поверхности цилиндра

Как запомнить формулу для площади боковой поверхности конуса?*

Нарисуем ракушку в форме конуса. Вот у него какая красивая боковая поверхность.

А в ракушке что бывает? – жемчужинка! По-английски жемчужина: pearl. Вот и запомним формулу для площади боковой поверхности конуса:

Остались объем шара V=\frac{4}{3}\pi R^{3} и площадь поверхности сферы S=4\pi R^{2}.

Что же, две формулы можно и просто выучить.

Хорошо, а как выучить формулы тригонометрии?

Есть отличный способ. Вырежьте из плотной бумаги карточки. На одной пишете левую часть формулы. На другой – правую. Перемешиваете. И собираете. Любые формулы запоминаются  легко и быстро!

И конечно, чем больше решаете задач, тем лучше запоминаются формулы.

*Лайфхак преподавателя ЕГЭ-Студии А.В. Фомичевой

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

НОВЫЙ НАБОР 2020 ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.