Slider

Энергия связи ядра.


Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев.

Темы кодификатора ЕГЭ: энергия связи нуклонов в ядре, ядерные силы.

Атомное ядро, согласно нуклонной модели, состоит из нуклонов - протонов и нейтронов. Но какие силы удерживают нуклоны внутри ядра?

За счёт чего, например, держатся вместе два протона и два нейтрона внутри ядра атома гелия? Ведь протоны, отталкиваясь друг от друга электрическими силами, должны были бы разлететься в разные стороны! Может быть, это гравитационное притяжение нуклонов друг к другу не даёт ядру распасться?

Давайте проверим. Пусть два протона находятся на некотором расстоянии r друг от друга. Найдём отношение силы F_{el} их электрического отталкивания к силе F_{gr} их гравитационного притяжения:

\frac{\displaystyle F_{\displaystyle el}}{\displaystyle F_{\displaystyle gr}}=\frac{\displaystyle ke^{2}/\displaystyle r^{2}}{\displaystyle Gm^{2}/\displaystyle r^{2}}=\frac{\displaystyle ke^{2}}{\displaystyle Gm^{2}}.

Заряд протона e=1.6 \cdot 10^{-19} Кл, масса протона m \approx 1,7 \cdot 10^{-27} кг, поэтому имеем:

\frac{\displaystyle F_{\displaystyle el}}{\displaystyle F_{\displaystyle gr}}=\frac{9\cdot 10^{9}\cdot 1,6^{2}\cdot 10^{-38}}{6,67\cdot 10^{-11}\cdot 1,7^{2}\cdot 10^{-54}}\sim 10^{36}.

Какое чудовищное превосходство электрической силы! Гравитационное притяжение протонов не то что не обеспечивает устойчивость ядра - оно вообще не заметно на фоне их взаимного электрического отталкивания.

Следовательно, существуют иные силы притяжения, которые скрепляют нуклоны внутри ядра и превосходят по величине силу электрического отталкивания протонов. Это - так называемые ядерные силы.

Ядерные силы.

До сих пор мы знали два типа взаимодействий в природе - гравитационные и электромагнитные. Ядерные силы служат проявлением нового, третьего по счёту типа взаимодействий - сильного взаимодействия. Мы не будем вдаваться в механизм возникновения ядерных сил, а лишь перечислим их наиболее важные свойства.

1. Ядерные силы действуют между любыми двумя нуклонами: протоном и протоном, протоном и нейтроном, нейтроном и нейтроном.
2. Ядерные силы притяжения протонов внутри ядра примерно в 100 раз превосходят силу электрического отталкивания протонов. Более мощных сил, чем ядерные, в природе не наблюдается.
3. Ядерные силы притяжения являются короткодействующими: радиус их действия составляет около 10^{-15}м. Это и есть размер ядра - именно на таком расстоянии друг от друга нуклоны удерживаются ядерными силами. При увеличении расстояния ядерные силы очень быстро убывают; если расстояние между нуклонами станет равным 2\cdot 10^{-15}м, ядерные силы почти полностью исчезнут.

На расстояниях, меньших 10^{-15}м, ядерные силы становятся силами отталкивания.

Сильное взаимодействие относится к числу фундаментальных - его нельзя объяснить на основе каких-то других типов взаимодействий. Способность к сильным взаимодействиям оказалась свойственной не только протонам и нейтронам, но и некоторым другим элементарным частицам; все такие частицы получили название адронов. Электроны и фотоны к адронам не относятся - они в сильных взаимодействиях не участвуют.

Атомная единица массы.

Массы атомов и элементарных частиц чрезвычайно малы, и измерять их в килограммах неудобно. Поэтому в атомной и ядерной физике часто применяется куда более мелкая единица - так
называемая атомная единица массы (сокращённо а. е. м.).

По определению, атомная единица массы есть 1/12 массы атома углерода _{}^{12}\textrm{C}. Вот её значение с точностью до пяти знаков после запятой в стандартной записи:

1 а. е. м.=1,66054\cdot 10^{-27}кг =1,66054\cdot 10^{-24}г.

(Такая точность нам впоследствии понадобится для вычисления одной очень важной величины, постоянно применяющейся в расчётах энергии ядер и ядерных реакций.)

Оказывается, что 1 а. е. м., выраженная в граммах, численно равна величине, обратной к постоянной Авогадро N_{a}=1,602214\cdot 10^{23} моль^{-1}:

\frac{1}{N_{A}}=\frac{1}{6,02214\cdot 10^{23}}=1,66054\cdot 10^{-24}моль.

Почему так получается? Вспомним, что число Авогадро есть число атомов в 12г углерода. Кроме того, масса m_{C} атома углерода равна 12 а. е. м. Отсюда имеем:

12г=N_{a}m_{C}=N_{A}\cdot 12 а. е. м.,

поэтому N_{A}\cdot 1а. е. м.=1г, что и требовалось.

Как вы помните, любое тело массы m обладает энергией покоя E, которая выражается формулой Эйнштейна:

E=mc^{2}. (1)

Выясним, какая энергия заключена в одной атомной единице массы. Нам надо будет провести вычисления с достаточно высокой точностью, поэтому берём скорость света с пятью знаками после запятой:

c=2,99792\cdot 10^{8} м/с.

Итак, для массы m_{1}=1 а. е. м. имеем соответствующую энергию покоя E_{1}:

E_{1}=m_{1} c^{2}=1,66054 \cdot 10^{-27} \cdot 2,99792^{2} \cdot 10^{16}=1,49241\cdot 10^{-10}Дж. (2)

В случае малых частиц пользоваться джоулями неудобно - по той же причине, что и килограммами. Существует гораздо более мелкая единица измерения энергии - электронвольт (сокращённо эВ).

По определению, 1 эВ есть энергия, приобретаемая электроном при прохождении ускоряющей разности потенциалов 1 вольт:

1 эВ =eV=1,60218\cdot 10^{-19}Кл\cdot 1В=1,60218\cdot 10^{-19} Дж. (3)

(вы помните, что в задачах достаточно использовать величину элементарного заряда в виде e=1,6\cdot 10^{-19} Кл, но здесь нам нужны более точные вычисления).

И вот теперь, наконец, мы готовы вычислить обещанную выше очень важную величину - энергетический эквивалент атомной единицы массы, выраженный в МэВ. Из (2) и (3) получаем:

E_{1}=\frac{1,49241\cdot 10^{-10}}{1,60218\cdot 10^{-19}}=0,93149\cdot 10^{9} эВ =931,5. (4)

Итак, запоминаем: энергия покоя одной а. е. м. равна 931,5 МэВ. Этот факт вам неоднократно встретится при решении задач.

В дальнейшем нам понадобятся массы и энергии покоя протона, нейтрона и электрона. Приведём их с точностью, достаточной для решения задач.

m_{p}=1,00728 а. е. м., E_{p}=938,3МэВ;
m_{n}=1,00867 а. е. м., E_{n}=939,6МэВ;
m_{e}=5,468\cdot 10^{-4} а. е. м., E_{e}=0,511МэВ.

Дефект массы и энергия связи.

Мы привыкли, что масса тела равна сумме масс частей, из которых оно состоит. В ядерной физике от этой простой мысли приходится отвыкать.

Давайте начнём с примера и возьмём хорошо знакомую нам \alpha-частицу ядро _{2}^{4}\textrm{He}. В таблице (например, в задачнике Рымкевича) имеется значение массы нейтрального атома гелия: она равна 4,00260 а. е. м. Для нахождения массы M ядра гелия нужно из массы нейтрального атома вычесть массу двух электронов, находящихся в атоме:

M=4,00260-2\cdot 0,0005486=4,00150а. е. м.

В то же время, суммарная масса двух протонов и двух нейтронов, из которых состоит ядро гелия, равна:

2m_{p}+2m_{n}=2 \cdot 1,00728+2 \cdot 1,00867=4,03190а. е. м.

Мы видим, что сумма масс нуклонов, составляющих ядро, превышает массу ядра на

\Delta m= 2m_{p}+2m_{n}-M=4,03190-4,00150=0,0304а. е. м.

Величина \Delta m называется дефектом массы. В силу формулы Эйнштейна (1) дефекту массы отвечает изменение энергии:

\Delta E=\Delta mc^{2}=0,0304\cdot 931,5\approx 28МэВ:

Величина \Delta E обозначается также E_{CB} и называется энергией связи ядра _{2}^{4}\textrm{He}. Таким образом, энергия связи \alpha-частицы составляет приблизительно 28 МэВ.

Каков же физический смысл энергии связи (и, стало быть, дефекта масс)?

Чтобы расщепить ядро на составляющие его протоны и нейтроны, нужно совершить работу против действия ядерных сил. Эта работа не меньше определённой величины A_{min}; минимальная работа A_{min} по разрушению ядра совершается в случае, когда высвободившиеся протоны и нейтроны покоятся.

Ну а если над системой совершается работа, то энергия системы возрастает на величину совершённой работы. Поэтому суммарная энергия покоя нуклонов, составляющих ядро и взятых по отдельности, оказывается больше энергии покоя ядра на величину A_{min}.

Следовательно, и суммарная масса нуклонов, из которых состоит ядро, будет больше массы самого ядра. Вот почему возникает дефект массы.

В нашем примере с \alpha-частицей суммарная энергия покоя двух протонов и двух нейтронов больше энергии покоя ядра гелия на 28 МэВ. Это значит, что для расщепления ядра _{2}^{4}\textrm{He} на составляющие его нуклоны нужно совершить работу, равную как минимум 28 МэВ. Эту величину мы и назвали энергией связи ядра.

Итак, энергия связи ядра - это минимальная работа, которую необходимо совершить для расщепления ядра на составляющие его нуклоны.

Энергия связи ядра есть разность энергий покоя нуклонов ядра, взятых по отдельности, и энергии покоя самого ядра. Если ядро массы M состоит из Z протонов и N нейтронов, то для энергии связи E_{CB} имеем:

E_{CB}=(Zm_{p}+Nm_{n})c^{2}-Mc^{2}=(Zm_{p}+Nm_{n}-M)c^{2}.

Величина \Delta m=Zm_{p}+Nm_{n}-M, как мы уже знаем, называется дефектом массы.

Удельная энергия связи.

Важной характеристикой прочности ядра является его удельная энергия связи, равная отношению энергии связи к числу нуклонов:

\varepsilon =\frac{E_{CB}}{A}.

Удельная энергия связи есть энергия связи, приходящаяся на один нуклон, и имеет смысл средней работы, которую необходимо совершить для удаления нуклона из ядра.

На рис. 1 представлена зависимость удельной энергии связи естественных (то есть встречающихся в природе 1) изотопов химических элементов от массового числа A.

Рис. 1. Удельная энергия связи естественных изотопов

Элементы с массовыми числами 210–231, 233, 236, 237 в естественных условиях не встречаются. Этим объясняются пробелы в конце графика.

У лёгких элементов удельная энергия связи возрастает с ростом A, достигая максимального значения 8,8 МэВ/нуклон в окрестности железа _{26}^{56}\textrm{Fe} (то есть в диапазоне изменения A примерно от 50 до 65). Затем она плавно убывает до величины 7,6 МэВ/нуклон у урана _{92}^{238}\textrm{U}.

Такой характер зависимости удельной энергии связи от числа нуклонов объясняется совместным действием двух разнонаправленных факторов.

Первый фактор - поверхностные эффекты. Если нуклонов в ядре мало, то значительная их часть находится на поверхности ядра. Эти поверхностные нуклоны окружены меньшим числом соседей, чем внутренние нуклоны, и, соответственно, взаимодействуют с меньшим числом соседних нуклонов. При увеличении A доля внутренних нуклонов растёт, а доля поверхностных нуклонов - падает; поэтому работа, которую нужно совершить для удаления одного нуклона из ядра, в среднем должна увеличиваться с ростом A.

Однако с возрастанием числа нуклонов начинает проявляться второй фактор - кулоновское отталкивание протонов. Ведь чем больше протонов в ядре, тем большие электрические силы отталкивания стремятся разорвать ядро; иными словами, тем сильнее каждый протон отталкивается от остальных протонов. Поэтому работа, необходимая для удаления нуклона из ядра, в среднем должна уменьшаться с ростом A.

Пока нуклонов мало, первый фактор доминирует над вторым, и потому удельная энергия связи возрастает.

В окрестности железа (50\leqslant A\leqslant 65) действия обоих факторов сравниваются друг с другом, в результате чего удельная энергия связи выходит на максимум. Это область наиболее устойчивых, прочных ядер.

Затем второй фактор начинает перевешивать, и под действием всё возрастающих сил кулоновского отталкивания, распирающих ядро, удельная энергия связи убывает.

Насыщение ядерных сил.

Тот факт, что второй фактор доминирует у тяжёлых ядер, говорит об одной интересной особенности ядерных сил: они обладают свойством насыщения. Это означает, что каждый нуклон в большом ядре связан ядерными силами не со всеми остальными нуклонами, а лишь с небольшим числом своих соседей, и число это не зависит от размеров ядра.

Действительно, если бы такого насыщения не было, удельная энергия связи продолжала бы возрастать с увеличением A - ведь тогда каждый нуклон скреплялся бы ядерными силами со всё большим числом нуклонов ядра, так что первый фактор неизменно доминировал бы над вторым. У кулоновских сил отталкивания не было бы никаких шансов переломить ситуацию в свою пользу!

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

НОВЫЙ НАБОР 2020 ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
РЕКОМЕНДУЕМ:
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.